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In this report, we introduce Gemini Embedding, a state-of-the-art embedding model leveraging the power
of Gemini, Google’s most capable large language model. Capitalizing on Gemini’s inherent multilingual
and code understanding capabilities, Gemini Embedding produces highly generalizable embeddings for
text spanning numerous languages and textual modalities. The representations generated by Gemini
Embedding can be precomputed and applied to a variety of downstream tasks including classification,
similarity, clustering, ranking, and retrieval. Evaluated on the Massive Multilingual Text Embedding
Benchmark (MMTEB), which includes over one hundred tasks across 250+ languages, Gemini Embedding
substantially outperforms prior state-of-the-art models, demonstrating considerable improvements in
embedding quality. Achieving state-of-the-art performance across MMTEB’s multilingual, English, and
code benchmarks, our unified model demonstrates strong capabilities across a broad selection of tasks
and surpasses specialized domain-specific models.

1. Introduction

Embedding models, which transform inputs into dense vector representations, are pivotal for capturing
semantic information across various domains and modalities. Text embedding models represent words
and sentences as vectors, strategically positioning semantically similar texts in close proximity within
the embedding space (Gao et al., 2021; Le and Mikolov, 2014; Reimers and Gurevych, 2019). Recent
research has focused on developing general-purpose embedding models capable of excelling in diverse
downstream tasks, including information retrieval, clustering, and classification (Cer et al., 2018;
Muennighoff et al., 2023). Leveraging their vast pre-training knowledge, large language models
(LLMs) have emerged as a promising avenue for constructing such general-purpose embedding models,
with the potential to significantly enhance performance across a broad spectrum of applications (Anil
et al., 2023a,b; Brown et al., 2020).

The integration of LLMs has revolutionized the development of high-quality embedding models
through two primary approaches. Firstly, LLMs have been employed to refine training datasets by
generating higher quality examples. Techniques such as hard negative mining (Lee et al., 2024)
and synthetic data generation (Dai et al., 2022; Wang et al., 2023) enable the distillation of LLM
knowledge into smaller, more efficient embedding models, leading to substantial performance gains.
Secondly, recognizing that the embedding model parameters are frequently initialized from language
models (Devlin et al., 2019; Karpukhin et al., 2020), researchers have explored leveraging LLM
parameters directly for initialization (Ni et al., 2021). While this approach introduces increased
1See Contributions and Acknowledgments section. ∗Equal contributions.
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Gemini Gecko gte-Qwen2- multilingual-e5- Cohere-embed- text-embedding-
Embedding Embedding† 7B-instruct large-instruct multilingual-v3.0 3-large

MTEB(Multilingual)
(Enevoldsen et al., 2025)

Mean (Task) 68.32 62.13 62.51 63.23 61.10 58.92
Mean (Type) 59.64 54.32 56.00 55.17 53.31 51.48

- Bitext Mining 79.32 70.73 73.92 80.13 70.50 62.17
- Classification 71.84 64.64 61.55 64.94 62.95 60.27
- Clustering 54.99 48.47 53.36 51.54 47.61 47.49
- Inst. Retrieval 5.18 4.08 4.94 -0.40 -1.89 -2.68
- Multilabel Class. 29.16 22.80 25.48 22.91 22.74 22.03
- Pair Class. 83.64 81.14 85.13 80.86 79.88 79.17
- Reranking 65.72 61.22 65.55 62.61 64.07 63.89
- Retrieval 67.71 59.68 60.08 57.12 59.16 59.27
- STS 79.40 76.11 73.98 76.81 74.80 71.68

MTEB(Eng, v2)
(Enevoldsen et al., 2025)

Mean (Task) 73.30 69.53 70.72 65.53 66.01 66.43
Mean (Type) 67.67 64.82 65.77 61.21 61.43 62.15

MTEB(Code)∗
(Enevoldsen et al., 2025)

74.66 65.40 56.41 57.94 51.94 58.95

XOR-Retrieve
(Asai et al., 2021)

90.42 65.67 N/A N/A N/A 68.76

XTREME-UP
(Ruder et al., 2023)

64.33 34.97 17.39 18.68 N/A 18.80

Commercial Use ! ! ! !

Table 1 | Comparison of embedding models on Massive Multilingual Embedding Benchmark:
MTEB(Multilingual), MTEB(Eng, v2), and MTEB(Code). We also show results on XOR-Retrieve
and XTREME-UP. For MTEBs, we report task and type mean performances. We report MRR@10 for
XTREME-UP and Recall@5kt for XOR-Retrieve. ∗: Averaged over seven code tasks available for all
models. †: For Gecko Embedding (Lee et al., 2024), we evaluate text-embedding-004 on MTEB(Eng,
v2), text-embedding-005 on MTEB(Code), and text-multilingual-embedding-002 on others.

computational demands compared to traditional embedding models, empirical evidence suggests
that utilizing strong LLMs for initialization can yield significantly superior performance (Lee et al.,
2025; Neelakantan et al., 2022; Wang et al., 2023).

In this work, we introduce Gemini Embedding,2 a novel embedding model initialized from the
powerful Gemini large language model (Anil et al., 2023a; Team, 2024). Leveraging Gemini’s diverse
capabilities, we train Gemini Embedding on a comprehensive suite of embedding tasks. To construct
a high-quality, heterogeneous training dataset, we employ Gemini for several critical data curation
steps: filtering low-quality examples, determining relevant positive and negative passages for retrieval,
and generating rich synthetic datasets. This curated dataset facilitates training with a contrastive
learning objective, enabling Gemini Embedding to learn robust semantic representations. Building
upon the success of Gecko (Lee et al., 2024), we incorporate task prompts and a pre-finetuning
stage to enhance performance. Finally, we utilize Model Soup (Wortsman et al., 2022), a simple
yet effective parameter averaging technique, to combine multiple fine-tuned checkpoints, yielding a
superior final embedding model.

To rigorously assess the capabilities of Gemini Embedding, we conduct extensive evaluations
across a diverse spectrum of tasks and languages. We primarily utilize the Massive Multilingual Text
Embedding Benchmark (MMTEB) (Enevoldsen et al., 2025), a comprehensive test suite encompassing
over 100 embedding evaluation tasks across more than 250 languages, to provide a thorough eval-
uation. Notably, Gemini Embedding achieves state-of-the-art performance on MTEB(Multilingual),
significantly surpassing the previous best models. Gemini Embedding achieves a first-place ranking
2Our model is available at https://ai.google.dev/gemini-api/docs/embeddings.
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on the public leaderboard based on Borda rank,3 as well as on mean score averaged over tasks
where it attains a score of 68.32, a substantial +5.09 improvement over the second-best model,
multilingual-e5-large-instruct. Furthermore, it achieves the highest task-type mean of 59.64, a +3.64
improvement over gte-Qwen2-7B-instruct. As summarized in Table 1, Gemini Embedding establishes
a new state-of-the-art on multiple other benchmarks such as XOR-Retrieve (Asai et al., 2021) for cross-
lingual retrieval. Remarkably, our findings demonstrate that Gemini Embedding exhibits exceptional
performance not only in high-resource languages like English but also in numerous low-resource
languages, such as Macedonian. We provide a detailed ablation study to elucidate the key factors
contributing to Gemini Embedding’s superior performance, offering insights into its effectiveness.

2. Related Work

Text Embedding Models Text embeddings are fundamental for a wide array of downstream natural
language processing tasks, including semantic similarity, information retrieval, clustering, and classifi-
cation. Prior models, such as Universal Sentence Encoder (Cer et al., 2018) and Sentence T5 (Ni et al.,
2022), have aimed to provide general-purpose embeddings capable of handling diverse applications.
However, empirical studies have revealed limitations in their ability to generalize effectively across
varied tasks and domains, highlighting the need for more robust and adaptable embedding models.
This has motivated the creation of comprehensive benchmarks like MTEB (Enevoldsen et al., 2025;
Muennighoff et al., 2023), which emphasize novel task and domain generalization.

LLMs for Embedding Data Generation Synthetic query generation (Bonifacio et al., 2022; Dai
et al., 2022; Jeronymo et al., 2023; Nogueira et al., 2019) for given documents or passages has proven
highly effective for creating diverse training data for embedding models. Lee et al. (2024) showed that
the seed passage from which a synthetic query was generated may not be the best positive passage for
that query and proposed an LLM-based approach to find better positive and negative passages. Wang
et al. (2023) scaled up synthetic data generation over nearly one hundred languages and hundreds of
thousands of tasks by prompting LLMs to first generate a diverse pool of candidate tasks and then
generate data as (query, positive, hard negative) triplets conditioned on specific tasks in the pool.

LLMs as Embedding Models Pre-trained LLM encoders with bidirectional attention, such as
BERT (Devlin et al., 2019) and T5 (Raffel et al., 2020), have been very popular as backbones
for embedding models. DPR (Karpukhin et al., 2020), Contriever (Izacard et al., 2022), Sentence-
BERT (Reimers and Gurevych, 2019), Language-agnostic BERT Sentence Embedding (LaBSE) (Feng
et al., 2022), Sentence-T5 (Ni et al., 2021), GTR (Ni et al., 2021), and E5 (Wang et al., 2022) are
some of the notable ones. Neelakantan et al. (2022) initialized embedding models from decoder-only
GPT-3 (Brown et al., 2020) and adapted it for embeddings via continued contrastive pre-training.
They have drastically scaled their embedding model up to 175 billion parameters, demonstrating
scaling gains from pre-trained LLM backbones.

Several recent embedding models such as E5-Mistral (Wang et al., 2023), SFR-Mistral (Meng
et al., 2024), BGE-ICL (Li et al., 2024), and NV-Embed (Lee et al., 2025) have been initialized from
the Mistral-7B (Jiang et al., 2023) backbone and then further adapted as embedding models. These
models generally outperform the BERT or T5 based models, showing the benefits of initializing from
pre-trained LLMs. However, their reliance on extensive in-domain training datasets has resulted in
overfitting to specific benchmarks (Enevoldsen et al., 2025).

3https://huggingface.co/spaces/mteb/leaderboard; March 10th, 2025.
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Figure 1 | Gemini Embedding represents text as dense vectors where semantically similar text inputs
are mapped to vectors near one another in the vector space. Currently it supports more than 100+
languages, and its embeddings can be used for various tasks such as retrieval and classification.

3. Gemini Embedding

In this section we provide technical details of the Gemini Embedding model in terms of the model
architecture, the objective function, and the training recipe.

3.1. Model Architecture

The Gemini Embedding model is built to create holistic representations of inputs for diverse down-
stream tasks, including retrieval, clustering, classification, and ranking by leveraging the power of
Gemini. The embedding model is initialized from Gemini and further refined. This allows Gemini
Embedding to build representations on top of the vast knowledge already present in Gemini’s param-
eters. In this sense, initializing the embedding model from Gemini can be seen as the "pre-training"
of the Gemini Embedding model.

An input sequence T of 𝐿 tokens is processed byM, a transformer with bidirectional attention
initialized from Gemini, producing a sequence of token embeddings Tembed = M(T) ∈ ℝ𝐿×𝑑M , where
𝑑M is the model dimension. To generate a single embedding representing all the information in the
input, a pooler P is applied, Pembed = P(Tembed) ∈ ℝ𝑑M . Prior research (Suganthan et al., 2025) has
demonstrated that simple pooling strategies can be effective in model adaptation. Therefore we have
chosen mean pooling, and simply average the token embeddings along the sequence axis. Finally, a
randomly initialized linear projection f is applied to scale the embedding to the target dimension,
E = f (Pembed) ∈ ℝ𝑑, where 𝑑 is the output embedding dimension.

3.2. Training Objective

The Gemini Embedding model was trained with a noise-contrastive estimation (NCE) loss with in-
batch negatives. The exact loss differs slightly depending on the stage of training. In general, a
training example includes a query 𝑞𝑖, a positive target 𝑝+𝑖 and (optionally) a hard negative target 𝑝

−
𝑖
.

Each example also has a prescribed task string 𝑡, for example "question answering" or "fact checking",
describing the nature of the task. The query and passages are embedded as vectors in ℝ𝑑:

q𝑖 = 𝑓 (mean_pool(M(𝑡 ⊕ 𝑞𝑖))), p±
𝑖 = 𝑓 (mean_pool(M(𝑝±𝑖 )). (1)
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Given a batch of size 𝐵 the loss applied to these embeddings is as follows:

L =
1
𝐵

𝐵∑︁
𝑖=1

− log
𝑒sim(q𝑖,p+𝑖 )/𝜏

𝑒
sim(q𝑖,p−

𝑗
)/𝜏 +∑𝐵

𝑗=1 mask(𝑖, 𝑗)𝑒sim(q𝑖,p+𝑗 )/𝜏

 (2)

where sim(x, y) = x⊤y/∥x∥∥y∥ is cosine similarity, and

mask(𝑖, 𝑗) =
{
0 if 𝑞𝑖 = 𝑞 𝑗 or 𝑝+𝑖 = 𝑝+

𝑗
,

1 otherwise.
(3)

This masking term is particularly relevant for classification tasks, where the number of targets (labels)
is small. The first term in the denominator is omitted if no hard negative is provided. In contrast with
Gecko (Lee et al., 2024), we omit the same-tower negatives (Moiseev et al., 2023) from the loss, as
we find this decreases performance for most tasks due to the potential of false negatives.

In order to support different dimensions of embeddings with a single model, we adapt the above
loss using MRL (Kusupati et al., 2022), which adapts the loss above into 𝑘 separate losses across
𝑘 overlapping sub-dimensions of the embedding (e.g. multi-loss training with one loss for the first
768 embedding dimensions, another for the first 1,536 dimensions, and so on). Gemini Embedding
provides 𝑑 = 3, 072 dimensional embeddings, with the MRL support on 768 and 1,536 dimensions.

3.3. Recipe

Initializing the embedding model from the Gemini parameters is a good starting point that leverages
the language model power. This initialization can be considered a "pre-training" of the embedding
model. However, in order to truly capture the generalization capabilities of initialization, we found it
beneficial to leverage a two-stage training pipeline.

Pre-finetuning First, the model is "pre-finetuned" on a large number of potentially noisy (query,
target) pairs, omitting the hard-negative term from the loss function. We find it beneficial to use a
large batch size, as the primary objective is to adapt the parameters from autoregressive generation
to encoding. The larger batch size also provides a more stable gradient, mitigating the impact of
noise in this phase of training. Due to the larger size of the pre-finetuning dataset, pre-finetuning is
performed for a substantially greater number of steps compared to fine-tuning.

Finetuning Next, the model is fine-tuned on a large mixture of task-specific datasets which contain
(query, target, hard negative target) triples. For this phase of training we found it beneficial to use
smaller batch sizes (e.g., less than 1024), and furthermore limit each batch to a single dataset, as
distinguishing a given positive target from in-batch targets from the same task provides greater signal
than discerning (say) a retrieval target from a classification label. We perform a grid search of various
training hyperparameters, including the inclusion and exclusion of components of the mixture, to
obtain candidate checkpoints.

Model Soup To obtain additional generalization performance, we averaged the parameters obtained
from individual fine-tuning runs. We experimented with different combinations of parameters,
including averaging checkpoints from the same training run (Izmailov et al., 2018), from different
training runs (Wortsman et al., 2022), as well as various weighted averages. The final set of ingredient
checkpoints were obtained through a combination of intentional data variation as well as manual
checkpoint selection and experimentation.

5
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4. Datasets

Our training data mixture contains diverse multilingual embedding tasks as well as code retrieval
tasks. Gemini is used in three different ways to improve the quality of our data: synthetic data
generation, data filtering, and hard negative mining.

4.1. Training Data Mixture

Pre-finetuning Our pre-finetuning stage aims to maximize the exposure of diverse training datasets
to Gemini Embedding models. We leverage a billion-scale web corpus and used title and passage
pairs as input and positive target pairs, similar to some prior work (Lee et al., 2024; Neelakantan
et al., 2022). Despite being very simple, this technique is consistently found to be effective even when
the embedding model is initialized from an LLM.

Fine-tuning For fine-tuning, we prepare three different mixtures aiming for task diversity, language
diversity, and coding capability. For task diversity, we use a subset of academic datasets used by
Gecko (Lee et al., 2024) as well as several synthetic datasets introduced in §4.2. Unlike existing
models on the classic MTEB (Muennighoff et al., 2023), we excluded many in-domain MTEB datasets,
which improved the performance only on their own test split mainly due to train-test leakage or
dataset bias. The training mixture rate was decided based on a fine-grained grid search, initialized
from the optimal number of training steps to converge on each training dataset.

4.2. Improving Data Quality with Gemini

Synthetic Data Generation Recent embedding evaluation benchmarks such as MMTEB (Enevoldsen
et al., 2025) contain many different tasks other than retrieval. We diversify and improve our training
mixture by adding synthetically generated datasets for two task types: retrieval and classification.
For retrieval, we extended our prior work on synthetic data generation using Gemini enhanced
adaptations of FRet (Lee et al., 2024) and SWIM-IR (Thakur et al., 2024). Using few-shot prompting,
we first use Gemini to generate synthetic queries for web passages followed by a Gemini auto-rater to
filter lower-quality examples (e.g., unrealistic search queries). For classification, we generate synthetic
counterfactual, sentiment, and review classification datasets in English. To increase the quality of
these synthetic datasets we developed multi-stage prompting strategies, such as conditioning on
synthetic user, product, or movie generations in a hierarchical manner and sampling from the tail of
longer lists of generations, as diversity naturally increases with generation length.

Data Filtering Our training data mixture includes many human-annotated datasets. We noticed
that many retrieval datasets have quality issues of incorrect positive or negative targets for a query. We
use Gemini to filter such bad examples. Based on our few-shot prompting for data quality assessment,
we remove low quality examples.

Hard Negative Mining A standard technique when training embedding models is to mine "hard
negatives," i.e. targets which are semantically similar to a true positive target but do not answer
the query (Reddi et al., 2019). We mine hard negatives for our retrieval datasets using Gemini.
We first train a Gemini-initialized embedding model without using any hard negatives. Based on
this initial embedding model, we retrieve top 𝑘 nearest neighbors for each query. Each nearest
neighbor is then scored by Gemini along with the query. We follow Lee et al. (2024) and employ two
different prompting strategies—graded classification and query likelihood—combining the scores
with Reciprocal Rank Fusion (RRF) (Cormack et al., 2009). We found that the lowest-scoring nearest
neighbors, (the 𝑘-th neighbor after being sorted by Gemini scores) serve as the best hard negatives.

6
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Mean
(Task)

Mean
(Type)

Bitext
Mining

Inst.
Retrieval

Multi.
Class.

Pair.
Class.Model Name Rank Class. Clus. Rerank. Retrieval STS

Gemini Embedding 1 68.3 59.6 79.3 71.8 55.0 5.2 29.2 83.6 65.6 67.7 79.4

Linq-Embed-Mistral 2 61.5 54.2 70.3 62.2 51.3 0.9 24.8 80.4 64.4 58.7 74.9
gte-Qwen2-7B-instruct 3 62.5 56.0 73.9 61.6 53.4 4.9 25.5 85.1 65.6 60.1 74.0
multilingual-e5-large-instruct 4 63.2 55.2 80.1 64.9 51.5 -0.4 22.9 80.9 62.6 57.1 76.8
SFR-Embedding-Mistral 5 60.9 54.0 70.0 60.0 52.6 0.2 24.6 80.3 64.2 59.4 74.8
GritLM-7B 6 60.9 53.8 70.5 61.8 50.5 3.5 22.8 79.9 63.8 58.3 73.3
text-multilingual-embedding-002 7 62.1 54.3 70.7 64.6 48.5 4.1 22.8 81.1 61.2 59.7 76.1
GritLM-8x7B 8 60.5 53.4 68.2 61.6 50.9 2.4 24.4 79.7 62.6 57.5 73.2
e5-mistral-7b-instruct 9 60.3 53.2 70.6 60.3 51.4 -0.6 22.2 81.1 63.8 55.8 74.0
Cohere-embed-multilingual-v3.0 10 61.1 53.3 70.5 63.0 47.6 -1.9 22.7 79.9 64.1 59.2 74.8
gte-Qwen2-1.5B-instruct 11 59.5 52.8 62.5 58.3 52.6 0.7 24.0 81.6 62.6 60.8 71.6
bilingual-embedding-large 12 60.9 53.0 73.6 62.8 47.2 -3.0 22.4 79.8 61.4 55.1 77.8

Table 2 | Performance of top leaderboard models on MTEB(Multilingual).

5. Evaluation

Gemini Embedding is assessed on a comprehensive collection of task types, domains, languages, and
language pairs (e.g., Hindi queries retrieving English content) using benchmark evaluations from
the Massive Multilingual Text Embedding Benchmark, MMTEB (Enevoldsen et al., 2025), and the
cross-lingual benchmarks XTREME-UP (Ruder et al., 2023) and XOR-Retrieve (Asai et al., 2021).

5.1. Benchmarks and Tasks

MMTEB consists of a large collection of individual evaluation tasks covering 250+ languages and 10
task types: Bitext Mining, Classification, Clustering, Instruction Retrieval, Multilabel Classification,
Pair Classification, Reranking, Retrieval, STS, and Summarization. Our MMTEB evaluations include
164 individual evaluation tasks consisting of 132 evaluation tasks for MTEB(Multilingual), 41 tasks for
MTEB(Eng, v2), and 12 code retrieval tasks for MTEB(Code). Notably, MTEB(Multilingual) contains
250+ languages. XOR-Retrieve and XTREME-UP provide cross-lingual retrieval evaluations, with
XOR-Retrieve pairing English passages with retrieval queries in 7 different languages and XTREME-UP
similarly pairing English passages with queries in 20 underrepresented Indo-European languages.

5.2. Overall Performance

Gemini Embedding’s overall performance along with that of other top performing models is presented
in Table 1 on the following evaluations: three benchmarks from MMTEB, MTEB(Multilingual),
MTEB(Eng, v2), MTEB(Code); and the two cross-lingual benchmarks XOR-Retrieve and XTREME-UP.

Gemini Embedding establishes a new state-of-the-art in performance, achieving the highest
overall performance on the MTEB(Multilingual) leaderboard (March 10th, 2025) with a substantial
performance lead over all previous top performing models on each of the overall metrics summarizing
aggregate performance across tasks: Task Mean (equal weighting of all tasks): 68.32, Task Type Mean
(equal weighting of all task types): 59.64, and Borda rank #1 (official leaderboard ranking metric).
Gemini Embedding’s performance advantage is not limited to just MTEB(Multilingual). Within a single
unified model and shared embedding space, Gemini Embedding’s capabilities allow it to achieve:
(i) #1 ranking on MTEB(Multilingual), (ii) #1 ranking on MTEB(Eng, v2), (iii) #1 ranking
on MTEB(Code), and (iv) excellent cross-lingual retrieval on XOR-Retrieve and XTERME-UP,
advancing the state-of-the-art for general-purpose embeddings as cross-lingual representations.

7



Gemini Embedding: Generalizable Embeddings from Gemini

Mean
(Task)

Mean
(Type)

Pair.
Class.Model Name Rank Class. Clus. Rerank. Retrieval STS Summ.

Gemini Embedding 1 73.3 67.7 90.1 59.4 87.7 48.6 64.4 85.3 38.3

Linq-Embed-Mistral 2 69.8 65.3 83.0 54.1 88.4 49.4 60.1 84.7 37.3
jasper_en_vision_language_v1 3 71.4 66.7 90.3 60.5 88.1 50.0 56.1 84.4 37.2
SFR-Embedding-Mistral 4 69.3 64.9 80.5 54.9 88.6 50.2 59.3 84.8 36.3
NV-Embed-v2 5 69.8 65.0 87.2 47.7 88.7 49.6 62.8 83.8 35.2
text-embedding-005 (Gecko) 6 69.6 64.8 86.0 51.9 87.6 48.8 58.8 85.2 35.1
text-embedding-004 (Gecko) 7 69.5 64.8 86.0 51.5 87.7 48.5 59.1 84.8 36.1
gte-Qwen2-7B-instruct 8 70.7 65.8 88.5 59.0 85.9 50.5 58.1 82.7 35.7
e5-mistral-7b-instruct 9 68.0 64.0 79.9 51.4 88.4 49.8 57.6 84.3 36.6
stella_en_400M_v5 10 69.4 64.8 88.3 57.7 87.2 49.6 52.7 83.9 34.5
stella_en_1.5B_v5 11 69.4 65.3 89.4 57.1 88.0 50.2 52.4 83.3 36.9
gte-Qwen2-1.5B-instruct 12 67.2 63.3 85.8 53.5 87.5 49.3 50.3 82.5 33.9

Table 3 | Performance of top leaderboard models on MTEB(Eng, v2).

Mean
All

Mean
-COIRModel Name Rank AppsR. COIR CESR CSNCCR CSNR CTOC CTODL CQA

Gemini Embedding 1 75.5 74.7 93.8 81.1 81.6 84.7 91.3 89.5 31.5 50.2

inf-retriever-v1-1.5b 2 62.9 60.6 38.9 78.6 67.2 75.5 90.9 85.0 33.8 33.1
text-embedding-005 (Gecko) 3 63.3 65.4 91.3 48.4 54.4 55.7 87.2 82.8 34.4 52.2
voyage-code-3 4 - - 93.6 89.4 - 90.1 94.0 95.0 38.6 34.5
NV-Embed-v2 5 - 59.4 29.1 - 74.0 68.8 86.6 89.1 33.4 34.8
voyage-3 6 - 67.3 73.0 - 75.6 77.9 92.3 89.9 33.9 28.7
GritLM-7B 7 - 62.4 35.1 - 74.6 86.7 86.7 89.2 33.0 31.2
KaLM-emb.-mling.-mini-v1 8 - 57.4 46.8 - 60.0 59.5 88.0 79.9 34.0 33.6
text-embedding-3-large 9 - 59.0 28.4 - 71.1 73.2 90.5 84.3 34.2 31.0
NV-Embed-v1 10 - 57.7 30.3 - 70.8 65.1 85.8 85.1 33.1 33.4
SFR-Embedding-Mistral 11 - 56.7 26.1 - 68.8 64.5 86.7 83.5 32.9 34.3
Linq-Embed-Mistral 12 - 57.5 30.2 - 70.6 64.5 87.1 84.9 32.8 32.6

Table 4 | Performance of top leaderboard models on MTEB(Code).

MTEB(Multilingual) leaderboard In Table 2, Gemini Embedding is compared with top-ranked
models fromMTEB(Multilingual). Achieving the highest Borda rank and excellent overall performance
across task types, Gemini Embedding particularly excels at Classification (+9.6), Clustering (+3.7)
and Retrieval (+9.0) compared to the second-best model.

MTEB(Eng, v2) leaderboard Comparing with top-ranked MTEB(Eng, v2) leaderboard models in
Table 3, Gemini Embedding achieves the highest Borda rank and great overall performance across
task types, with particularly striking performance improvements on Classification (+7.1), Clustering
(+5.3), and Retrieval (+4.3) compared to the second-best model.

MTEB(Code) leaderboard The eight tasks present on the MTEB(code) leaderboard, which excludes
the four additional MTEB(code) tasks CodeFeedbackMT, CodeFeedbackST, StackOverflowQA, and
SyntheticText2SQL, are shown in Table 4. Only a few models, including both Gemini Embedding
and Google’s Gecko model, have been submitted to the MTEB(Code) leaderboard with evaluations
over all tasks. On the MTEB(Code) leaderboard, Gemini Embedding once again achieves the highest
Borda rank and mean performance across all eight evaluation tasks. Since the majority of other top
models on MTEB(Code) are missing COIRCodeSearchNetRetrieval (COIR), we also report the mean
performance over the seven remaining tasks, Mean -COIR. Gemini Embedding still achieves the best
mean performance over the seven Mean -COIR evaluation tasks.
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Average as bho brx gbm gom gu hi hne kn mai ml mni mr mwr or pa ps sa ta ur

Gemini Embedding 64.3 69.2 66.4 25.7 64.9 65.5 70.3 69.1 68.3 69.5 68.4 70.8 44.4 68.8 66.5 65.8 69.5 61.9 68.1 68.6 64.8
Gecko i18n Embedding 35.0 31.9 39.7 3.8 37.4 26.0 42.9 46.3 42.0 41.6 44.1 45.5 9.4 41.5 40.7 19.4 40.9 33.0 35.9 40.5 37.0

voyage-3-large 39.2 34.3 44.8 7.9 46.6 27.1 46.7 54.3 45.3 41.5 48.3 45.3 19.2 45.5 47.9 32.3 48.4 26.8 40.0 36.0 45.6
Linq-Embed-Mistral 24.6 23.8 38.1 8.6 37.0 21.7 11.6 44.2 39.7 21.7 38.5 10.2 14.7 31.4 36.2 10.7 8.3 13.8 37.7 14.3 29.3
multiling.-e5-large-instr. 18.7 21.2 21.9 1.5 19.3 8.7 13.9 30.6 22.6 24.2 24.0 8.6 6.3 23.0 19.8 17.3 24.5 15.9 19.1 22.9 28.2
gte-Qwen2-7B-instruct 17.4 14.7 22.7 5.4 23.0 7.0 19.1 30.4 19.1 16.2 25.9 21.7 7.2 23.8 24.0 11.3 19.2 11.0 21.1 9.7 15.5
text-embedding-3-large 18.8 18.2 28.8 3.3 28.4 11.1 14.6 40.4 29.3 17.1 31.1 15.6 2.9 25.5 28.7 8.3 11.3 6.8 26.6 6.0 22.0

Table 5 | Performance of top multilingual models on XTREME-UP (MRR@10).

Input: প্ৰ শ্ন : মেহেঞ্জা-দােৰা সভ্যতা ັকান নদীৰ দ্বাৰা আৱদ্ধ আিছল? (language: Assamese)
Translation: The Mohenjo-Daro civilization was surrounded by which river?

Gemini Embedding
Retrieved Passage: Mohenjo-daro is located west of the Indus River in Larkana District, Sindh, Pakistan, in a central position between the Indus 
River and the Ghaggar-Hakra River. It is situated on a Pleistocene ridge in the middle of the flood plain of the Indus River Valley, around from the 
town of Larkana. The ridge was prominent during the time of the Indus Valley Civilization, allowing the city to stand above the surrounding flood, 
but subsequent flooding has since buried most of the ridge in silt deposits. The Indus still flows east of the site, but the Ghaggar-Hakra riverbed on 
the western side is now dry.

text-embedding-3-large
Retrieved Passage: The city of Mymensingh stands on the bank of the Old Brahmaputra, as the 1897 Assam earthquake changed the main flow 
from Brahmaputra to the Jamuna River which flows west of the greater Mymensingh region. After about hundred years, a port city of sea vessels 
from England lost its status as the river became a seasonal flow. Some former residences of colonial officials along the side of the river in the city 
are nowadays government buildings.

Input: आंध्र  प्र देश की राजकीय पक्षी कोसी है? (language: Hindi)
Translation: Which is the official bird of Andhra Pradesh?

Gemini Embedding
Retrieved Passage: The Indian state of Andhra Pradesh has about 484 bird species within its political boundary. This following list of birds is based 
on the taxonomic treatment of Clements's 6th edition but includes recent revisions. The Indian roller is the state bird of Andhra Pradesh.

text-embedding-3-large
Retrieved Passage: The Indian National Congress (INC), the Praja Socialist Party and the Krishi Lok Party were the major parties in the 1950s. Later 
the Communist Party of India (CPI) became the dominant opposition party. In the 1967 state assembly elections, all socialist parties were eliminated 
and the CPI lost opposition party status.

Figure 2 | Gemini Embedding supports cross-lingual retrieval where different languages can be used
for queries and passages. We show two examples from XTREME-UP showing the strong cross-lingual
retrieval capability of Gemini Embedding. Despite Assamese being a relatively low-resource language
and the Hindi query having a typo, the Gemini Embedding model correctly understood the key
entities and the contexts in the queries and retrieved the correct passages.

XTREME UP The performance of Gemini Embedding along with the top-performing multilingual
models on XTREME-UP cross-lingual retrieval is presented in Table 5. XTREME-UP requires mapping
queries in 20 underrepresented languages to English passages. Gemini Embedding demonstrates a
remarkable improvement in cross-lingual retrieval with its general-purpose embeddings.

5.3. Qualitative Examples

In Figure 2, we show examples from XTREME-UP that show the cross-lingual retrieval capability of
Gemini Embedding. The two queries are given in Assamese and Hindi, and the task is to retrieve
relevant English passages that contain the answers. Each query without any translation is encoded
and the highest-scoring English passages are retrieved using cosine similarity. Gemini Embedding
found the right passages showcasing its strong capability on multilingual and cross-lingual tasks.
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MTEB(Multilingual) MTEB(Eng, v2) MTEB(Code) XOR-Retrieve XTREME-UP

Gemini Embedding 68.32 73.28 74.66 90.42 64.33

Pre-Finetuning

Pre-finetuning Only 48.89 50.99 46.18 76.64 21.22
No Training 30.55 28.17 9.86 - -

Fine-tuning Mixtures

English Only (Diverse Task) 66.75 72.77 58.68 85.70 49.34
Multilingual Only (Retrieval) 58.24 61.88 58.75 89.00 65.06
Code Only (Retrieval) 60.20 62.25 72.08 82.16 34.74

Table 6 | Results using different training mixtures for MTEBs (task mean), XTREME-UP (MRR@10),
and XOR-Retrieve (Recall@5kt). Using a Gemini foundation, the English Only mixture is able to
achieve good performance on MTEB(Multilingual), MTEB(Eng, v2) and XOR-Retrieve. Multilingual
fine-tuning helps the most on the long-tail languages in XTREME-UP. Ablations exclude model souping.

Average AmazonCounterfactual AmazonPolarity AmazonReviews Emotion

w/o Synthetic 57.57 65.43 67.29 48.84 48.70
w/ Synthetic 75.17 (+17.6) 91.30 96.51 57.00 55.90

Gecko Embedding 66.78 66.52 97.28∗ 51.24 52.09
Gemini Embedding 76.09 92.70 96.10 59.30 56.27

Table 7 | Results on MTEB classification using synthetic datasets. Self-training on Gemini generated
training data dramatically improves model performance, +17.6. Ablation models exclude souping.
∗ Gecko training mixtures include training sets provided by several classification tasks from Huggingface.

6. Ablation Study

To better understand how Gemini Embedding achieves great performance across many different tasks
and languages, we provide a systematic analysis of our training recipe.

6.1. Does Gemini Embedding Generalize to Multilingual Tasks?

In Table 6, we show how Gemini Embedding can generalize over different languages and tasks. In the
middle rows, we show our model’s performance before fine-tuning: no training and pre-finetuning
only. Pre-finetuning greatly improves the performance across multiple benchmarks. The bottom
rows show the effect of further fine-tuning the pre-finetuned checkpoints. We find that training on
the English-only mixture still achieves very strong performance on MTEB(Multilingual) where the
evaluations are mostly zero-shot. Remarkably, even when training our model on the English-only
mixture, we are able to outperform the top embedding models on XTREME-UP.4 This shows Gemini
Embedding can generalize over different languages even if its training mixture contains only a single
language. On the other hand, our multilingual-only mixture consists of only retrieval datasets but not
other task types such as classification. Its lower score indicates that task diversity matters more than
language diversity for fine-tuning in Gemini Embedding.
4+10.1 MMR@10 for English-only fine-tuning in Table 6 vs. the top performing non-Gemini model in Table 5
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Average ar bn de en es fa fi fr hi id ja ko ru sw te th yo zh

w/o Filtering 59.8 74.8 71.5 46.5 54.6 44.5 51.3 66.8 46.0 59.4 34.9 56.9 55.1 62.6 69.7 73.6 71.9 85.0 51.7
w/ Filtering 63.7 (+3.9) 74.2 74.7 52.9 54.7 47.3 55.5 74.7 49.5 59.3 47.1 61.9 63.3 64.8 76.0 75.0 75.0 83.3 57.0

Gecko Embedding 56.2 64.3 66.7 49.1 45.3 48.5 49.2 65.2 45.1 55.0 44.7 52.6 57.5 55.1 67.4 74.5 66.5 54.0 50.7
Gemini Embedding 70.1 78.3 79.0 59.8 58.7 57.0 60.9 78.0 55.6 65.4 54.3 75.1 68.9 73.4 81.0 80.5 80.8 88.8 65.7

Table 8 | Results on filtering the MIRACL datasets. We show that proper filtering of retrieval datasets
using LLMs can greatly improve the performance.

0 1 3 5 77
# Hard Negatives

0.65

0.70

0.75

0.80

0.85

nD
CG

@
10

FEVER

0 1 3 5 77
# Hard Negatives

HotpotQA

0 1 3 5 77
# Hard Negatives

NQ

0 1 3 5 77
# Hard Negatives

SciFact

Figure 3 | Results on retrieval datasets with different number of hard negatives. We show that our
hard negatives are mostly useful.

6.2. How Does Gemini Improve Data Quality?

Synthetic Data Generation We show the effectiveness of our multi-stage prompting strategy to
create diverse, realistic synthetic classification datasets in Table 7. Note that these are zero-shot
synthetic datasets, so no actual examples from the original datasets were used when prompting
Gemini. Training on our synthetic classification datasets greatly improves the performance on all
datasets. We find that the performance with synthetic datasets can match the performance of in-
domain datasets (e.g. Gecko on AmazonPolarity), and our multi-stage prompting strategy even allows
for controllable generation, raising the possibility of reducing bias compared to real data.

Data Filtering We use Gemini to filter retrieval datasets. We test filtering the MIRACL (Zhang et al.,
2023) training datasets, which contain retrieval datasets in 18 different languages, and measure the
impact of training on the filtered dataset. Table 8 shows that filtered results consistently show better
results across different languages showing only minor drops for some languages. As demonstrated
in Table 6, our English mixture helps to improve the quality on multilingual tasks, making Gemini
Embedding the best in Table 8 as well.

Hard Negative Mining We examine the quality of our hard negatives selected by Gemini. As
demonstrated in Figure 3, incorporating hard negatives generally enhances our model’s retrieval per-
formance across the four datasets. However, excessive hard negatives often led to overfitting, causing
performance degradation for retrieval tasks. Future work will explore regularization techniques and
better hard negative sampling strategies to address overfitting.

7. Future Work

Beyond the text embedding capabilities described here, we will explore extending the embedding
capabilities for other modalities like image, video, and audio. We want to leverage the powerful multi-
modal capabilities of Gemini to make the Gemini Embedding model comprehensive (Jiang et al., 2024)
in terms of representing different combinations of modalities together in a single embedding space.
This will require curating multi-modal data tasks suitable for learning generalizable representations.
We will also explore training recipes that will balance the performance of a single model across
different uni-modal and multi-modal capabilities.
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8. Conclusion

Gemini Embedding is a unified, general-purpose, and highly-capable embedding model that capitalizes
on the strong capabilities of Gemini to advance the state-of-the-art in representation learning. Building
on an excellent foundation provided by Gemini’s multilingual and code understanding capabilities,
Gemini Embedding generates a versatile encoding of model inputs into representations with a wide
range of capabilities over many languages, domains, and task types including: classification, similarity
search, clustering, ranking, and retrieval. Gemini Embedding both adapts the capabilities of Gemini to
representation learning and uses Gemini itself to generate many of the training sets for this adaptation.
The resulting representations benefit from the underlying capabilities of Gemini itself while also being
efficient to precompute, cache, and re-use them. Efficiently cacheable and reusable representations
unlock the ability to apply the power of Gemini in new compute and latency-sensitive settings.

Rigorous evaluations provided by the Massive Multilingual Text Embedding Benchmark (MMTEB)
reveal substantial gains over previous top-performing models advancing the state-of-the-art in perfor-
mance on multilingual, English, and code evaluations. Beyond strong overall performance, Gemini
Embedding particularly excels at classification, clustering and retrieval tasks. The advanced versatile
and unified capabilities provided by Gemini Embedding and the ability to precompute representations
enables the power of Gemini to be leveraged more broadly by both researchers and developers alike.
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9. Full Results

Task Name Performance

AILAStatutes 48.77
AfriSentiClassification 53.56
AlloProfClusteringS2S.v2 56.36
AlloprofReranking 81.77
AmazonCounterfactualClassification 88.20
ArXivHierarchicalClusteringP2P 64.92
ArXivHierarchicalClusteringS2S 63.84
ArguAna 86.44
ArmenianParaphrasePC 96.89
BUCC.v2 98.99
BelebeleRetrieval 90.73
BibleNLPBitextMining 20.72
BigPatentClustering.v2 38.06
BiorxivClusteringP2P.v2 53.86
BornholmBitextMining 51.69
BrazilianToxicTweetsClassification 28.02
BulgarianStoreReviewSentimentClassfication 78.13
CEDRClassification 57.42
CLSClusteringP2P.v2 42.68
CSFDSKMovieReviewSentimentClassification 49.38
CTKFactsNLI 87.59
CataloniaTweetClassification 54.51
Core17InstructionRetrieval 7.69
CovidRetrieval 79.13
CyrillicTurkicLangClassification 95.30
CzechProductReviewSentimentClassification 68.16
DBpediaClassification 94.76
DalajClassification 50.47
DiaBlaBitextMining 87.23
EstonianValenceClassification 53.52
FaroeseSTS 86.12
FilipinoShopeeReviewsClassification 48.45
FinParaSTS 28.60
FinancialPhrasebankClassification 88.64
FloresBitextMining 83.71
GermanSTSBenchmark 88.09
GreekLegalCodeClassification 43.76
GujaratiNewsClassification 92.05
HALClusteringS2S.v2 32.00
HagridRetrieval 99.31
IN22GenBitextMining 93.75
IndicCrosslingualSTS 62.87
IndicGenBenchFloresBitextMining 96.77
IndicLangClassification 87.69
IndonesianIdClickbaitClassification 67.00
IsiZuluNewsClassification 40.53
ItaCaseholdClassification 73.30
JSICK 84.99
KorHateSpeechMLClassification 17.69
KorSarcasmClassification 60.51
KurdishSentimentClassification 86.39
LEMBPasskeyRetrieval 38.50
LegalBenchCorporateLobbying 95.98
MIRACLRetrievalHardNegatives 70.42
MLQARetrieval 84.16
MacedonianTweetSentimentClassification 71.83
MalteseNewsClassification 37.38
MasakhaNEWSClassification 83.55
MasakhaNEWSClusteringS2S 57.45
MassiveIntentClassification 81.92
MedrxivClusteringP2P.v2 47.16
MultiEURLEXMultilabelClassification 5.28
MultiHateClassification 72.47
NTREXBitextMining 93.64
NepaliNewsClassification 98.14
News21InstructionRetrieval 10.26

Task Name Performance

NollySentiBitextMining 68.71
NordicLangClassification 85.97
NorwegianCourtsBitextMining 93.42
NusaParagraphEmotionClassification 56.38
NusaTranslationBitextMining 77.52
NusaX-senti 80.31
NusaXBitextMining 82.52
OdiaNewsClassification 91.84
OpusparcusPC 96.62
PAC 71.68
PawsXPairClassification 59.99
PlscClusteringP2P.v2 74.31
PoemSentimentClassification 59.66
PolEmo2.0-OUT 77.53
PpcPC 95.50
PunjabiNewsClassification 82.61
RTE3 89.55
Robust04InstructionRetrieval -2.41
RomaniBibleClustering 43.22
RuBQReranking 73.84
SCIDOCS 25.15
SIB200ClusteringS2S 41.74
SICK-R 82.75
SNLHierarchicalClusteringP2P 61.41
STS12 81.55
STS13 89.89
STS14 85.41
STS15 90.44
STS17 88.58
STS22.v2 71.69
STSB 85.50
STSBenchmark 89.08
STSES 81.75
ScalaClassification 51.85
SemRel24STS 73.14
SentimentAnalysisHindi 76.06
SinhalaNewsClassification 82.29
SiswatiNewsClassification 62.38
SlovakMovieReviewSentimentClassification 90.35
SpartQA 10.30
SprintDuplicateQuestions 96.90
StackExchangeClustering.v2 92.07
StackOverflowQA 96.71
StatcanDialogueDatasetRetrieRetrieval 51.11
SwahiliNewsClassification 66.05
SwednClusteringP2P 45.84
SwissJudgementClassification 57.86
T2Reranking 67.95
TERRa 63.92
TRECCOVID 86.32
Tatoeba 81.97
TempReasonL1 2.96
ToxicConversationsClassification 88.75
TswanaNewsClassification 53.37
TweetTopicSingleClassification 71.11
TwitterHjerneRetrieval 98.02
TwitterURLCorpus 87.05
VoyageMMarcoReranking 66.73
WebLINXCandidatesReranking 10.97
WikiCitiesClustering 91.63
WikiClusteringP2P.v2 28.23
WikipediaRerankingMultilingual 92.24
WikipediaRetrievalMultilingual 94.20
WinoGrande 60.52
XNLI 85.26
indonli 60.69

Table 9 | Full results of Gemini Embedding on MTEB(Multilingual).
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Task Name Performance

AmazonCounterfactualClassification 92.69
ArXivHierarchicalClusteringP2P 64.92
ArXivHierarchicalClusteringS2S 63.84
ArguAna 86.44
AskUbuntuDupQuestions 64.24
BIOSSES 88.97
Banking77Classification 94.27
BiorxivClusteringP2P.v2 53.86
CQADupstackGamingRetrieval 70.68
CQADupstackUnixRetrieval 53.69
ClimateFEVERHardNegatives 31.06
FEVERHardNegatives 88.98
FiQA2018 61.78
HotpotQAHardNegatives 87.01
ImdbClassification 94.98
MTOPDomainClassification 99.27
MassiveIntentClassification 88.46
MassiveScenarioClassification 92.08
MedrxivClusteringP2P.v2 47.16
MedrxivClusteringS2S.v2 45.01
MindSmallReranking 32.95
SCIDOCS 24.04
SICK-R 82.75
STS12 81.55
STS13 89.89
STS14 85.41
STS15 90.44
STS17 91.61
STS22.v2 68.37
STSBenchmark 89.08
SprintDuplicateQuestions 96.90
StackExchangeClustering.v2 92.07
StackExchangeClusteringP2P.v2 50.91
SummEvalSummarization.v2 38.28
TRECCOVID 86.32
Touche2020Retrieval.v3 52.39
ToxicConversationsClassification 88.75
TweetSentimentExtractionClassification 69.88
TwentyNewsgroupsClustering.v2 57.37
TwitterSemEval2015 79.17
TwitterURLCorpus 87.05

Task Name Performance

AppsRetrieval 93.75
COIRCodeSearchNetRetrieval 81.06
CodeEditSearchRetrieval 81.61
CodeFeedbackMT 56.28
CodeFeedbackST 85.33
CodeSearchNetCCRetrieval 84.69
CodeSearchNetRetrieval 91.33
CodeTransOceanContest 89.53
CodeTransOceanDL 31.47
CosQA 50.24
StackOverflowQA 95.92
SyntheticText2SQL 69.96

Table 10 | Full results of Gemini Embedding on MTEB(Eng, v2) (left) and MTEB(Code) (right).

Language Performance

ar 91.26
bn 94.08
fi 89.17
ja 86.31
ko 89.82
ru 88.61
te 93.70

Language Performance

as 69.25
bho 66.38
brx 25.66
gbm 64.87
gom 65.54
gu 70.26
hi 69.06
hne 68.33
kn 69.54
mai 68.39
ml 70.82
mni 44.44
mr 68.77
mwr 66.49
or 65.77
pa 69.55
ps 61.90
sa 68.09
ta 68.57
ur 64.85

Table 11 | Full results of Gemini Embedding on XOR-Retrieve (left) and XTREME-UP (right).
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