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Abstract

This paper details the extraction and analysis of cannabis strain data found in cannabis use and
education website Leafly. The analysis applies regular statistical methods and methods drawn from
the field of Natural Language Processing (NLP) to find patterns and relations between information
such as strain names, ratings, effects, flavors, and genealogical origins. The analysis aims to carve
a path to quantitatively investigate the factors involved in cannabis strain names and cannabis
strain success, by organizing publicly available data and conducting an initial exploratory analysis

through the lens of NLP.

1. Motivation and Goal

Cannabis strain names, simply put, are bizarre. Some, at least, have clear origins. "Sweet Dreams"
is named after its purported relaxing effects, "Strawberry Cough" due to its strawberry flavor,
"Lavender" because of its aroma, and "Jack Herer" in honor of the cannabis rights activism of its
namesake. However, most are more complicated, and some are simply strange; some names of the
most popular strains are “Martian Candy”, “Obama Kush”, “XJ-13", “Ewok”, “AK-47", "Alaskan
Thunder Fuck" and “Stardawg” [4]. In fact, some strain names are even counter-intuitive, connoting
negative or otherwise unappealing characteristics. For example, some denote inedible or otherwise
unpleasant substances, such as "Original Glue" and "Sour Diesel", and some even evoke danger,

such as "White Widow".



As a result of their unusual and unexpected names, understanding how cannabis strains came
to be named is intrinsically interesting. This process cannot be purely random, and so searching
for some sense in the chaos of strain names may result in insights related to cannabis’ chemical
properties, human behavior, or perhaps even something completely unforeseeable.

More importantly, finding patterns in cannabis names, especially when relating these to strain
popularity metrics, is bound to yield important insights for coming up with new strain names. This
problem is a particularly interesting case within the field of product naming because the cannabis
industry is actively transitioning from illicit to legal throughout the United States: "more than
two-thirds of US states have legalized medical cannabis", 18 of those having also legalized cannabis
for recreational use [9]. This unique in-between legal position implies strain naming practices are
unique, and as growers, consumers, industry practices, and public perception all change, naming
practices are likely changing, too.

The problem is also more relevant than ever, in part because of the upsurge in legality. Sales
are growing: they hit $20 billion in 2020, were on track to overcome $26 billion in 2021, and are
projected to leap to $45.9 billion in 2025 [9]. Jobs are increasing: there were an estimated 321,000
full-time jobs in the cannabis industry in 2020, up from 234,700 just a year before [9]. Research

into cannabis strain names, then, is also more significant than ever.

2. Background and Related Work

One significant reason for which this project is interesting is that little to no work has been
done on the area of cannabis strain naming, despite the study of cannabis overall being being a
well-established field. Searches on the Association for Computational Linguistics’ anthology for
“cannabis strain names”, “cannabis strain”, and “strain names” yield some cannabis-related papers
and projects, but no relevant results. Similar searches on JSTOR yield the same results.

One relevant paper published in the journal Cannabis and Cannabinoid Research attempted to

"determine the actual levels of chemical diversity represented in 2662 samples of Cannabis flower

collected between January 2016 and June of 2017 in Nevada" [6]. Researchers measured chemical



profile data and used it to cluster cannabis samples with different breeder-reported names using
principal component analysis (PCA). It turns out thousands of samples drawn from 396 differently
named strains cluster best into only 2-3 well-defined groups, depending on the exact definition
of chemical profile. See in Figure 1, for example, how only two clusters are optimal when using
both terpenoids and cannabinoids in defining the chemical profile (results were very similar when
using each type of chemical individually). Thus, the paper concluded that cannabis strain names
overestimate the chemical and genetic diversity of strains "and do not inform patients regarding
chemical properties”. Chemical makeup being unable to explain differences in strains’ names begs
the question of what could. Perhaps use effects such as "euphoric" or "giggly", which occur due to
only slight chemical differences? Or perhaps only perceived differences in strains, communicated
implicitly by connecting strains to well-established parent strains? These results have even caused
people to call for either scratching cannabis strain names altogether or enforcing regulations with
regards to names, further motivating this project [5].
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Figure 1: Optimal clustering using cannabinoid and terpenoid data.

Another relevant paper published in the journal JAMA Psychiatry seeked to compare cannabis



flowers with differing tetrahydrocannabinol (THC) concentrations using biobehavioral research
methods [1]. Researchers found that THC concentration of cannabis products were unrelated to user
intoxication. See in Figure 2 how the dotted lines, representing the cannabis products with lowest
THC concentrations, actually yielded the highest intoxication levels. This lies in stark contrast to
public perception: "when it comes to moving product on the legal recreational [cannabis] market,
only two numbers matter: the list price, and the THC content" [7]. If differences in consumption
effects also cannot be explained by strains’ chemical composition, then could it be that these
purported effects—and perhaps even flavors and alleged health benefits—are to some extent placebo

and thus mentally induced by strains’ names?
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Figure 2: Change in self-reported intoxication between products with different THC concentrations.

Both of these results yield interesting motivating questions. But more importantly, they inspire

and justify the approach we take in this project, described next.



3. Approach

Despite both strain names and use effects apparently are not attributable to chemical properties,
users continue to differentiate between strains and report wildly different consumption experiences.
We need a new approach to understanding (differences in) strain properties like consumption effects
and names. The lack of chemical explainability suggests this might be rather psychological and due
to perceived differences in how strains are portrayed or marketed. As such, we choose to adopt a
linguistic lens with which to tackle the questions.

Moreover, thanks to the ongoing legalization of cannabis use, cannabis suppliers and websites can
grow rather than stay small and hidden. In combination with the digital revolution, the result is that
there is more and more data about cannabis strains available online. This allows for computational
analysis, which in combination with our linguistic lens naturally invites the use of techniques
drawn from Natural Language Processing (NLP), by definition an umbrella term for computational
processing of natural human language, such as sentiment analysis and semantic embeddings.

However, current publicly available datasets are lacking mostly in that they either (1) focus not on
attributes of cannabis strains themselves but rather on legal and business attributes of the cannabis
industry at large, or (2) are not large enough, both in amounts of fields and in amounts of strains. As
such, we chose to create our own dataset using data found in Leafly. We chose Leafly for its size of
more than 125 million yearly visitors, 1.3 million product reviews, and 5,000 strains [3]. Compare
our resulting dataset to the best I could find online: 5774 strains, instead of approximately 800, and

71 total fields, instead of approximately a half-dozen [2].

As a result, our approach is novel in three ways:

1. We investigate questions and hypotheses that have been left unexplored altogether; this field of
research is new.

2. We apply natural language processing (NLP) and computational linguistics (CL) techniques for

analysis.



3. We use our own dataset, which contains the newest, largest, and most comprehensive strain data

available.

4. Implementation

4.1. Data Scraping

Feel free to access our complete datasets right here.

4.1.1. Strain attributes

Scraping data from Leafly used to be easier in the past. Each of the thousands of cannabis strains in
the database used to simply have been assigned increasing numbers, starting from 1, that identified
the strain. Each strain then had a corresponding page which one could reach by adding that
number to the end of a fixed URL address (page address). For example, "leafly.com/strains/1"
corresponded to the first strain in their database, "leafly.com/strains/1" to the second, and so on.
Recently, however, the extensions to be added to the URL address "leafly.com/strains/" (which take
the name of "slugs") were recently changed into more meaningful textual representations of the
strains, almost always matching strains’ names. For example, the strain "Sorcerer’s Apprentice" can
be found at "leafly.com/strains/sorcerers-apprentice". To access each strain’s page, then, we first
began by going through Leafly’s list of strains, accessible at URLs "leafly.com/strains?page=1" all
the way to "leafly.com/strains?page=182", and storing these slugs from the hyperlinks that led to
each strain.

After this, we would be able to extract the data from each individual strain’s page. A lot of time
was spent figuring this out, since much of the relevant information was displayed in bars (strain
potency), graphs (children and parent strains), and other complicated web page elements. However,
careful examination of the source code of the pages that list all strains revealed that all remotely
relevant information about the strains that Leafly collects, only some of which is actually visible in
strains’ individual pages, are actually all conveniently available in that source code in JSON format,
despite not being utilized in the pages listing all strains. As a result, our scraping must only iterate

through 183 pages of strain lists, each listing at most 30 strains, instead of nearly 6,000 individual


https://schechterh.github.io/cannabis-analysis-data/

pages. Because querying a page and extracting its source code is the most time-consuming part of
the scraping itself, our scraping turned out to be extremely efficient.

Now, we discuss more specific implementation details. We performed our scraping in Google
Research’s Colab platform, so as to (1) be able to more easily store things in the cloud through
Google Drive, and (2) because it is built for Python, which contains many relevant libraries for
things such as scraping and NLP. Ultimately, then, the way we scrape for information about strains
is, for each of the 183 pages listing strains:

1. We query the source code using the ‘requests’ library.

2. We extract the information about the strains listed in the given page (found easily because it is
consistently found in the same location in the source code).

3. We use the ‘json’ library to convert the new data into a dictionary.

4. We extract our ongoing data thus far from a file stored in our Google Drive using the ‘shelve’
library.

5. We add our new data to the ongoing data as a new entry in a list.

6. We update the Google Drive file with the newly updated total data.

Note that constantly updating our database file using ‘shelve’ ensures that our progress is saved in
case the process is cut out due to network or software errors, or in case we cannot afford to complete
the entire scraping process in one go (it took a very long time).

In the end, we are left with a list of 5774 dictionary objects, one for each strain, and each with 71
different fields. See an example in Figure 3. For convenience, I also selected and list below the set
of attributes I found to be most potentially useful or relevant:

* Aliases

* Average rating (and rating count)

Awards

Cannabinoid percentages (CBC, CBD, CBG, THC, THCV)

» Category or phenotype (sativa, indica, hybrid, edible)

Chemotype (THC or CBD dominant, or balanced)



* Energizing score and highness/THC score

* Terpene (aromatic chemicals) concentrations

* Children strains, parent strains
¢ Scores for each:

— Condition (e.g. anxiety)

Effect (e.g. relaxed)

Negative effect (e.g. sore throat)

Flavor (e.g. earthy)

Symptom (e.g. lack of appetite)

* Growth information (difficulty, yield, height, flowering days, etc.)

e Similar strains
¢ Total followers

* Written description

'slug’':
'id':
'aka':

'articleTotalCount':
'articlesAvailable':
'averageRating':
'award':

'trending':
'videoUrl':

}

'Jjet-fuel',

118799,

'Jet Fuel 0G, G6, Jet Fuel G6,
Jet Fuel Kush, G6 Kush',
c

True,

4,523809523809524,
{"blurb': None,
'imageUrl': None},
False,

None

Figure 3: Representation of a strain object, with truncated information, for strain "Jet Fuel".

4.1.2. Strain reviews

The former approach was sufficient to scrape data on almost all strain attributes, except one:

reviews. These are particularly tricky because (1) they are not found in raw page source content, (2)

they are found separately altogether, in strains’ review pages, and (3) there are a lot of them, and

they take up a lot of memory.



We solve problem (1) first. For a given strain’s slug s/ug and the number pagenum of one of its re-
view pages, we use the page address "https://www.leafly.com/strains/slug/reviews?page=pagenum".
Since this page’s source content alone is insufficient, we use the ‘HTMLSession’ module from
the ‘requests_html’ library to render the page’s HTML with its JavaScript. Then, we can use the
‘BeautifulSoup’ library to find the review elements.

One issue with this process is that it turned out to be unreliable, sometimes yielding no reviews
despite a page being populated with reviews. Thus, we attempt this process repeatedly until we get
a non-zero amount of reviews. However, now we must know whether we expect a page to have
reviews or not. Thus, we must figure out how many pages of reviews each strain has. We do this by
visiting the first page of reviews for each strain and following the same process as above, except
instead of searching for the review elements using ‘BeautifulSoup’, we search for the ‘max page
number’ element. We stored these page totals in a small database file, again using the ‘shelve’
library.

The final issue was space. The HTMLSession was incompatible with Colab, which is constantly
running on an event loop, and so scraping the reviews was done locally on the PyCharm IDE
(integrated development environment). However, we needed cloud storage more than ever, given
Leafly reports having 1.3 million user reviews. The solution was to use the GoogleDrive (in
conjunction with the required Google Auth module) from the *PyDrive’ library. After some credential
setup through Google Cloud Platform, this allows us to directly upload to our Google Drive.

Thus, ultimately our process for scraping reviews was very similar to that of scraping other strain
attributes:

1. Access our lists of page totals and URL slugs for all strains.
2. For each strain, iterate over its page numbers. For each:
(a) Scrape reviews in the corresponding page, as described above.
(b) Retrieve our data thus far, stored in the form of a dictionary where each strain slug is a key,
using the ‘shelve’ library.

(c) Add to list of reviews in the dictionary entry corresponding to the strain.



(d) Update our stored ongoing data using ‘shelve’.

One important detail is that ‘shelve’ files are themselves kept as dictionaries, storing a dictionary
within one, which itself has values that are lists, entails a data structure that is too recursive by
default: the program will yield an error. Thus, it is important to set the recursion limit to a higher
value using the ‘sys’ library.

Note that since each page of reviews holds at most 8 of a stain’s total reviews, there are a lot
of pages to scrape; moreover, each page must be rendered by JavaScript before being scraped;
moreover, the data must be sent through a server to be stored in the cloud. As a result, this process
is very lengthy. As a result, before the review dataset could be completed, Leafly was restructured.
Leafly has begun to require Captcha verification to use, and, as of the final version of this paper,
continues to have errors in displaying data (e.g. no strains at all can be found in the list of all
strains).

4.1.3. Categories

As part of a subsequently explained test (section 5.3), we created two relevant lists of categories
that may also prove useful for future analysis. The first is simply a list of names of fruits. The
second is a list of names of colors, grouped into thirteen main "shades". For example, "cardinal",
"salmon", and "maroon" are all under "red".

Here, we also used the ‘requests’ library to get the page’s source content, the pages this time
being from Wikipedia pages [8] [10]. We then use the ‘BeautifulSoup’ library to parse the HTML
and find the elements corresponding to fruits and colors, respectively. We then store our results also
using the ‘shelve’ library; the fruits are stored as a list, and the colors as a dictionary with keys
being the names of the main shades (blue, red, green, etc.) and the values being a list of colors
that fall under that broad category. We also preprocess color names by substituting parenthesized
expressions with the ‘re’ regular expression library (and of course, as always with textual data,

trimming trailing and beginning whitespace and converting to lower case).

10



4.2. General Testing Methodology

There are two critical aspects of our hypothesis testing methodology to discuss: the statistical
methods used in actually testing our hypotheses, and the strain attribute we used as the popularity
metric (since strain popularity was relevant to many hypotheses).

First, our statistical methods. We began by running various regression analyses between strain
attributes that were either already quantitative or that we computed or quantified ourselves. This
seems to be the most intuitive approach to take when trying to find relations between data, as
regressions by definition attempt to find relationships between variables. However, we soon found
these tests to yield extremely statistically insignificant results (very low p-values). This was in spite
of the large amount of tests we conducted—in fact, we conducted so many tests that one concern
going in was that we would get false positive results out of mere chance. We conjectured that this
was due to (1) correlations already expected to be weak because many external forces (that are
unaccounted for here) come into play with strain naming and strain popularity, and (2) we had a
large sample size of 5774 strains, and each strain introduced variance, such that their combined
variance was too large to yield statistically significant results with regular regression analysis. Note
that we performed linear regression analyses specifically, all using the ‘LinearRegression’ module
of the ‘sklearn’ library (which required us to represent our data using ‘numpy’ arrays), because it
would be unreasonable to expect complex non-linear relationships between the variables we were
testing, though it might have been worthwhile to explore other regression tests had we not found
this issue with regression tests as a whole.

As a result, we pivoted our approach for future questions. To try to account for the variance that
thousands of strains introduced, we instead separated strains into two groups based on one attribute
(the independent variable), and ran t-tests for differences in the group means of another attribute
(the dependent variable). The decrease in variance is two-fold. The binary categorization accounts
for variance in the independent variable, as small fluctuations in the independent variable would
not be large enough to change which of the two groups a strain is put in. More importantly, taking

the mean of the groups accounts for variance in the dependent variable, as each group would have
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more than enough strains to have a representative sample. This change of direction also meant
reformulating our questions accordingly, to accommodate this type of hypothesis test. All T-tests
were computed using the ‘ttest_ind’ function from the ‘scipy’ library’s ‘stats’ module, which offers
both one-sided and two-sided T-tests.

The second important aspect to discuss is the heuristic we use for strain popularity. First, we
simply used average strain ratings. However, this is limited in a few ways. First of all, many
strains do not have many reviews, implying high variance in their average rating. Second, strain
ratings are not very evenly distributed between 1 and 5, tending to be rather high. This could be
because strain consumption tends to generally be enjoyable, or because those leaving reviews tend
to self-selectively be happy consumers. We dealt with this by defining "popular” strains to be those
rated above 4.7, as this is almost exactly the 75th percentile of average ratings, but it might be
worthwhile exploring normalization methods instead, especially for tests where popularity was the
dependent variable.

We then ran each test or analysis again using amount of ratings as the popularity metric instead.
This measure is inferior to the former, of course, because it encompasses strain quality only
implicitly, since better strains are more likely to be sold frequently and thus receive many reviews.
However, it is superior in a few ways. First, it is not subject to variance as a result of small
sample sizes. Strains with few reviews are out there competing in the market and simply are not
as popular. Second, it is less subjective. Strain ratings are human attempts at quantifying their
experience. Market success and sales volumes, which is reflected in review amounts, are less
qualitative. However, this measure also shares the problem that average rating had of being a
skewed distribution (though positively skewed, rather than negatively skewed). As such, we also
defined "popular" when using amount of ratings as above the 75th percentile, which is those with
29 reviews or more.

We note that it might be interesting combining the two measures for a more comprehensive
popularity heuristic, perhaps also scaling the weight of ratings by the amount of reviews. This is

especially true since the two measures of popularity we used often yielded highly contradictory
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results in the same tests, and so are both evidently limited as individual indicators of popularity.

5. Analyses
Within each motivating question’s subsection, we discuss both implementation and results.
5.1. What strain attributes might help make them popular?

Here, our goal was to find possible predictors of strain popularity, so that we could determine

whether chemical composition, consumption experiences, or marketing (namely strain names)

influence consumers most. The intent was to see whether names really were worthwhile to look at
if creating popular strains is one’s goal. We fit linear regression models with strain popularity as the
dependent variable. The independent variables we tested were:

1. THC concentration.

2. User-reported effect scores. Effects here refers to feelings and experience upon consuming the
strain, specifically ‘Relaxed, ‘Sleepy’, ‘Creative’, ‘Talkative’, ‘Euphoric’, ‘Energetic’, ‘Hungry’,
‘Giggly’, ‘Tingly’, ‘Happy’, ‘Focused’, ‘Aroused’, and ‘Uplifted’.

. User-reported flavor scores. Flavors here refer to 47 different tastes and aromas like ‘pungent’,
‘nutty’, ‘earthy’, and ‘grape’.

. Sentiment values of strain name. These were computed using the ‘SentimentIntensity Analyzer’
module of the ‘vaderSentiment’ (or ‘VADER’) library. VADER’s sentiment analyzer was chosen
intentionally. First, it is lexicon-based (i.e. considers each word individually). This is appropriate
here because strain names are often groups of unrelated words (often even comically so) put
together, so attempting to consider the names as existing phrases or in context of each other
would likely produce less accurate scores. Second, it allows us to compute "compound" polarity
scores, which combine scores for both positive and negative sentiment, boiling sentiment down
to a single value and thus making analyses easier to carry out.

Results: We found only weak or insignificant relationships between the variables. R? values did

not exceed a magnitude of 0.01. We fail to reject the null hypotheses that there are no significant
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relationships between strain popularity and these strain attributes. See full results in the Appendix,

in Table 4.
5.2. To what extent are strain names attributable to strain consumption effects (or vice versa)?

Sometimes, the influence of a strain’s effects on its name are clear, as is the case with the "Laughing
Buddha" strain having ‘giggly’ as its top user-reported effect, or example. However, most strains’
names are not direct references to their most commonly reported effects. Still, it’s possible that
strains’ names tend to generally reflect the sentiment of a strain’s top reported effects. This is what
we test here. Specifically, we compute compound polarity scores (as justified and explained in
4.2.2 above) for each strain’s names and most commonly reported effect, and fit linear regression
models with sentiment of strain names as the dependent variable and sentiment of strain effects as
the independent variable (though a causal effect is possible the other way, too, since it’s possible
that users experience effects in part as placebos due to strain names).

Results: Our model yielded a coefficient of 0.025630 and an intercept of -0.00061733 with an
R? value of 0.0023264. This coefficient of determination is extremely low, and so we fail to reject

the null hypothesis that strain names are not attributable to strain consumption effects.

5.3. What strain consumption effects are the most conducive to popularity?

Many strain names signal the strain’s consumption effects, as with "Laughing Buddha" inducing
giggliness and "Green Crack" purportedly leaving users energetic. Thus, it would be useful to
know which of these effects sell best, so producers can potentially choose names indicative of
top-performing effects (with respect to strain popularity).

For a given effect E;, we separate strains whose top reported effect is E; from all other strains. We
then conduct a two-sided T-test for differences in means of the popularity metric. We also compute
the differences in mean values of the popularity metrics themselves, to see what the actual change
in popularity is.

Results: Using average ratings, many effects yielded statistically significant results at an ot = 0.05

14



level: ‘sleepy’, ‘tingly’, ‘focused’, and ‘aroused’. However, the differences in means are minimal,
with the largest being with the ‘aroused’ group, whose strains averaged a rating nearly 0.1 larger
than that of other strains (on the 5-point scale).

Using review counts, many effects also yielded statistically significant results at an o¢ = 0.05 level:
‘sleepy’, ‘energetic’, ‘tingly’, ‘focused’, and ‘aroused’. Here, however, differences in means were
actually very large, all in the magnitude of hundreds. Notably, while ‘sleepy’ and ‘energetic’ effects
seem to positively contribute to review counts, strains whose top effects were ‘tingly’, ‘focused’, or
‘aroused’ actually had significantly fewer reviews than other strains. Intuitively, these results seem
to make sense, as the former two effects are broad and thus more likely to be popularly appealing,
while the latter three are specific and niche such that they are less likely to be.

As mentioned above, we do find that certain effects significantly contribute to strain popularity,
since for each of these effects we reject the null hypothesis that strains that most commonly yield
the given effect on average have the same popularity scores as other strains. See complete results in

Table 1.
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| Effect | Difference in means | T-statistic | p-value |

Relaxed | 0.038728 1.7212 0.085331
-8.0992 -0.24613 | 0.8056
Sleepy -0.055583 -3.1411 0.0017009
95.505 3.6951 0.0002241
Creative | -0.018064 -0.62371 | 0.53287
31.182 0.73662 0.46142
Talkative | -0.0036803 -0.13688 | 0.89114
-65.12 -1.6578 0.097466
Euphoric | -0.025055 -0.85154 | 0.39455
8.4848 0.19726 0.84364
Energetic | -0.065308 -3.0728 0.0021418
218.67 7.0909 1.6879e-12
Hungry | -0.060787 -2.3273 0.02002
8.3714 0.21906 0.82662
Giggly 0.036334 1.4206 0.15554
-60.715 -1.6243 0.10443
Tingly 0.045713 1.8085 0.070635
-113.09 -3.0644 0.002202
Happy 0.060494 2.0305 0.042407
-65.816 -1.5108 0.13095
Focused | -0.00090716 -0.035037 | 0.97205
-93.862 -2.483 0.013087
Aroused | 0.099128 3.754 0.00017764
-116.88 -3.0255 0.002505
Uplifted | 0.044411 1.5483 0.12168
-73.396 -1.7508 0.080094

Table 1: Differences of means of popularity between strains with given top effect and the rest of
strains (difference = mean with effect - mean of rest). Popularity is defined as average rating in white
rows, amount of reviews in gray rows.

5.4. Do name patterns with categories influence strain popularity?

One pattern observed in strain names is that these will often contain words that clearly belong to
one of many categories. Most commonly, many strains contain a color in their name, and many
contain a fruit. Sometimes, multiple strains exist whose names are identical except for a change
in the category word. For example, there is both a strain called "Blueberry Dream" as well as one
called "Strawberry Dream", and there is both a strain called "Purple Kush" as well as one called

"Green Kush". Sometimes the names are the same with the type of category having changed. For
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example, besides the ‘Kush’ strains with colors, there are also ‘Kush’ strains with fruits, such as
"Banana Kush" and "Orange Kush".

Here, we try to figure out which type of category is mot conducive to popularity (between fruits
and colors) by running a two-sided difference of means T-test between mean popularity scores of
strains with fruits in their name and strains without fruits in their name, and then doing the same
with colors. We also test whether having category words at all is conducive to popularity, by running
a two-sided difference of means T-test between mean popularity scores of strains with either a fruit
or a color (or both) in their name and strains with neither in their name.

We manually created lists of categories for these two category types because these appear to be
the most popular category types within strain names. Note that a less accurate but faster approach
would entail using named-entity recognition (NER) algorithms to label words with categories and
thus allow similar analyses to be performed for many other categories, such as animals.

We note that it would be interesting to find which specific categories are the most conducive to
popularity, within each type, by running the same difference of means tests but between strains with
those specific categories in their name and those without them. However, at least with our data,
these results would not be very meaningful: there is an insignificantly small amount of strains, for
example, which utilize the word "orange" specifically.

Results: Most results turned out to be statistically insignificant. The test that separates strains
with either a fruit or a color in their name yielded very similar results to the test that only separated
strains with fruits in their names (both significant), while the test that only separated strains with
colors in their names had very different and very insignificant results. This makes it seem very
likely that it was the fruit names that caused the statistical significance in the "fruit or color" test.
Thus, we reject the null hypothesis that strains with no category words in their name have the
same mean popularity as those with fruit or color category words, and we also reject the null
hypothesis that strains with no category words in their name have the same mean popularity as
those with fruit category words, both when using average rating as the popularity metric. However,

counter-intuitively, we found that in both of these cases, the group with the higher mean average
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rating was actually that without any category words in their name.

See full results in Table 2.

| Category type | Means (contains word) | Means (no word) | Diff. of means | T-statistic | p-value |

Fruit or color | 3.4951 3.6421 -0.14696 -2.3197 0.020391
66.172 67.652 -1.4806 -0.11861 | 0.90559

Fruit only 3.5052 3.6386 -0.13341 -2.0606 0.039391
68.664 67.161 1.5023 0.11777 0.90625

Color only 3.4405 3.6193 -0.17877 -0.80121 | 0.42305
47.227 67.636 -20.409 -0.46442 | 0.64237

Table 2: Differences of means of popularity between strains that contain a category word and those
that do not, for different sets of category words (fruits, colors, and both). Note that difference = mean
containing word - mean with no word. Popularity is defined as average rating in white rows, amount
of reviews in gray rows.

5.5. Do names of popular strains share common characteristics?

Here, we are trying to see if there are patterns to popular strains’ names. We investigate linguistic
(Iexical) traits; specifically, we examine part-of-speech distributions and sentiment values of strain
names.

We separate all strains into two groups: popular (avg. rating > 4.7 or review count > 28) and
unpopular. We then carry out two-sided difference of means T-tests on (a) names’ compound
polarity (sentiment) scores, on (b) proportion of adjectives in strains’ names, and (c) proportion
of verbs in strains’ names. We choose adjectives and verbs specifically because they are the only
parts of speech that occur with any meaningful amount of frequency in strain names (after nouns, of
course).

We used the ‘nltk’ (Natural Language Toolkit) library here: the ‘punkt’ module for tokenizing
and the ‘averaged_perceptron_tagger’ module for part-of-speech tagging.

Results: The tests yielded significant results for proportions of verbs and proportions of adjectives,
but not for sentiment value. Tests with proportions of verbs had the smallest p-values and yielded
significant results on both popularity metrics.

However, these results might not be too promising: for both proportions of adjectives and
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proportions of verbs, the differences of means changed from positive to negative between popularity
metrics, which seems to indicate our results are actually contradicting themselves. It may be the

case that proportions of adjectives and verbs in strain names are already so small that even slight

variance in their values is sufficient to create false positives in these tests.

See full results in Table 3.

] Difference in means

| Popular mean | Unpopular mean | Diff. of means | T-statistic | p-value

Sentiment value 0.0065748 0.0065564 1.8346¢-05 0.0036272 | 0.99711
0.011889 0.0047755 0.0071133 1.4493 0.1473

Proportion of verbs 0.017069 0.01113 0.0059396 2.3569 0.018462
0.0058247 0.014731 -0.008906 -3.6437 0.00027114

Proportion of adjectives | 0.039527 0.049565 -0.010038 -2.0218 0.043241
0.050173 0.046279 0.0038938 0.80784 0.41922

Table 3: Differences of means of lexical properties of strain names between popular strains and other
strains. Note that difference = popular mean - unpopular mean. Popularity is defined as average
rating in white rows, amount of reviews in gray rows.

5.6. Does the biological genealogy of strains account for their popularity?

Most strains are results of breeding existing strains. Here, we seek to determine whether strains
which have at least one popular parent score higher in popularity themselves (than those that do
not have any popular parents). Again, we separate the strains into those with at least one popular
parent (avg. rating > 4.7 or review count > 28) and those without any, and run one-sided difference
of means T-tests on popularity values (the alternative hypothesis being that the group with children
of popular parents will have a greater mean).

Results: Both popularity metrics yield very large differences in means with very high statistical
significance.

Children with at least one parent with a rating above 4.7 had an average rating of 4.15, while
children with no parents with a rating above 4.7 had an average rating of 3.60. The T-test for
the difference between these means yielded a T-statistic of 3.8186 and a respective p-value of
0.00013559.

Children with at least one parent with a review count above 28 had an average review count of
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16.489, while children with no parents with a review count above 28 had an average review count
of 124.26. The T-test for the difference between these means yielded a T-statistic of 11.637 and a
respective p-value of 5.9340e-31.

It might also be productive to investigate if and how this effect dwindles as one goes down the
descendant line. For example, might this effect of increased popularity wane in strength as a linear

function of how many ancestors away a strain is from a popular strain?

5.7. Does ‘signaling’ parent’s name increase popularity retention?

We found that children of popular strains tend to be more popular themselves. Could it be the case
that this effect is caused (or at least amplified) by signals in the children strains’ names that suggest
or communicate which strains they are descended from?

To answer this, we test to see whether strains with these signals tend to have popularity scores
closer to those of the parents whose names they are signaling. We consider a signal to be a word
that is present in a strain’s parents’ names. Thus, the question we are really asking is whether strains
which share a word with one or both of their parents (e.g. “Bubba Kush”, children of "OG Kush"
and "The Bubba") have more similar ratings to those parents?

We do not neglect stopwords (commonly used words that are typically ignored during NLP tasks),
as even words like "The" in "The Bubba" are significant when strain names are composed of such
few words and tend not to contain stopwords. We first separate strains into those that share at
least one word with either of their parents (this group definition is lenient because it is relatively
infrequent), and those that do not share any. We then compute the average absolute difference in
popularity scores between the child strain and its parent strains. We define that as its "distance"
in popularity from its parents, and compute a one-sided difference of means T-test of popularity
scores (the alternative hypothesis being that the group with children with signals will have a smaller
mean).

Results: Using average rating, strains with at least one signal did indeed have a smaller "distance"
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in popularity from their parents than those that had none, but only slightly so: the former group had
an average distance of 0.48521 and the latter 0.52773. This result was very statistically insignificant,
though, with the T-test yielding a T-statistic of -1.1416 and a corresponding p-value of 0.12687.

Using review counts, strains with at least one signal had a mean "distance" from their parents of
1854.1 reviews, while those with no signals had a mean "distance" from their parents of 1492.3.
This result is even more insignificant: the T-test yielded a T-statistic of 4.5205 and a corresponding
p-value of 0.99999.

Interestingly, using review counts, the effect is actually the opposite of that which we expected.
Indeed, re-running the T-test using the opposite alternative hypothesis yields an extremely significant
p-value of 3.2119e-06. Perhaps users are less inclined to write reviews for strains that they perceive
as similar to strains they have already written reviews for (the popular parents). This result seems to
contradict the intuitive explanation for our prior finding that children of popular parents tend to be
popular themselves, which is that the children are popular by virtue of being recognizably related
similar to their parents. Perhaps it is the chemical properties of the popular parents that make the
kids popular, too, but children must not seem too obviously similar to their parents (e.g. by having
signals in their names) so as to appear to be a unique strain and not a rip-off. This would also help
explain the unexpected outcome in Section 5.4 that strains with names that did not have category
words tended to have higher average ratings.

There are two other related tests we did not carry out that might yield interesting results. First, it
would be interesting to carry out this same test using not just exact word matches but also strength
of semantic similarity to parents (using word embeddings). Second, it would be worthwhile to test,
for strains that have a child with a shared word as well as a child without one, whether the former
children have popularity scores more similar to those of the parent strain than the latter. In other
words, this would test if children strains with "signals" in their names have popularity scores closer

to their parents’ than their "sibling" strains that do not have signals in their names.
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6. Summary

6.1. Conclusion

We accomplished what we set out to do with this project. In seeking to investigate questions and
hypotheses that have been thus far unexplored, we carried out several analyses and ran countless
tests: this was a great initial exploratory analysis of cannabis strain names through a computational
and linguistic lens, using techniques such as sentiment analysis and part-of-speech tagging as well
as a new and more comprehensive dataset.

We had several statistically insignificant results, many unexpected, but here we summarize the
statistically significant results we acquired. We found evidence supporting the ideas that:

1. Certain effects (‘sleepy’, ‘energetic’, ‘tingly’, ‘focused’, and ‘aroused’) significantly contribute
to strain popularity. Contributions to review count were much larger than to average rating, but
were often negative contributions (decreasing popularity).

2. Strains with names that contain fruits (or perhaps categories at large) tend to be less popular than
those that do not.

3. Strain names with verbs tend to have higher average ratings but lower review counts. Strain
names with adjectives tend to have lower average ratings.

4. Strains with at least one parent that is popular (75th percentile or higher in popularity) tend to
have much higher average ratings and review counts (on average, 0.55 points higher in rating
with 107.771 more reviews).

5. Opposite to what was expected, strains that signal their popular parents in their names tend to
differ in popularity from their parents more than those that do not (using review counts).

The results may influence how cannabis sellers breed, market, and name new strains.

The first three reveal three ways in which they may do so such that they exploit tendencies for
popularity. For example, they may breed strains to yield specific effects that tend to be related to

popular strains, advertise strains to be particularly potent at evoking these effects (perhaps indirectly
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through names reminiscent of effects, like "Northern Lights" being relaxing), or avoid fruits and
adjectives when naming strains.

The latter two reveal potential for exploitation. Evidently, strains somehow benefit from popular
parents. However, the nature of how they do this is crucial to reaping the benefits. Maybe it is
the similarity in chemical profiles that leads to this effect, in spite of prior related work that might
suggest otherwise. In this case, it is in the best interest of cannabis sellers to breed only (or at least
primarily) popular strains. Perhaps, however, recognition of relatedness to popular strains through
signals in names does help this effect manifest itself, but our testing was insufficiently thorough, in
which case naming strains accordingly might be the best way to utilize this effect. Either way, only

future work will truly let us know.
6.2. Future Work

Note that alternative approaches, further analyses to be made, and related ideas (forms of future
work) are all mentioned throughout the paper when relevant. We summarize only the most promising
ones here.

First, there are further tests to be carried out to figure out where the parent-to-child popularity
retention comes from. It might still be attributable to names, in which case two possible things to
try are (1) using not just exact word matches but also semantic similarity using word embeddings,
and (2) testing if children strains with "signals" in their names have are closer to their parents in
popularity than sibling strains without signals in their names. Alternatively, the popularity retention
might be attributable to chemical similarity, in which case studies specifically examining chemical
profiles of related strains might yield relevant results.

There are also significant methodology decisions that might be worth re-evaluating. For example,
since the two popularity heuristics we used each have evident weaknesses (e.g. average rating being
subject to variance due to sample size or review counts not necessarily being representative of
popularity but rather recognizability) and often yielded contradicting results, it would be interesting

to factor in both of these measures intelligently (perhaps using review counts as a weight for
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rating) to obtain a more accurate measure of popularity. It might even be worthwhile to apply
standardization methods to these popularity metrics to try regression tests again.

There are also simply other interesting analyses that might be fruitful, such as using named-entity
recognition (NER) algorithms to label words with categories and thus perform similar category
analyses but with many more categories, or investigating how quickly and in what kind of function
the parent-child popularity retention effect diminishes as one looks at grandchildren (of popular
strains), great-grandchildren, and so on.

Again, there is little to no work in this field of study, and the apparent senselessness of strain
naming has people calling for creating and enforcing strain name regulations or even outright
abolishing cannabis strain names altogether [5]. The problem is both neglected and motivated:
future work is promising.

Furthermore, with this new dataset available online—the largest, most comprehensive, and most up
to date—the problem of understanding strain names is more tractable than ever. Our data is published
following the Open Data Institute’s standards and practices, and is freely available at this address.

We hope this opens the floor to more research in this area.
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9. Appendix

9.1. Results for Section 5.1: '""What strain attributes might help make them popular?"

What follows are a set of tables displaying linear regression model results with independent variables

of (1) THC concentration, (2) strain name sentiment score, (3) effect scores, and (4) flavor scores.

White rows show results where average rating is used as the dependent variable (i.e. popularity

metric), and gray rows show those where review count is used as the dependent variable. Note "R>"

denotes the coefficient of determination for the regression, and "coefficient" and "intercept" denote

the resultant linear model itself.

Table 4

Independent variable \ R® \ Coefficient | Intercept

THC concentration 0.0019789 | 0.016063 3.5344

0.00026688 | 141.19 -1.7042

Strain name sentiment (compound polarity score) | 1.4281e-05 | -0.042173 | 3.6175

3.837e-05 13.615 67.313
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] Independent variable \ R? Coefficient | Intercept
Relaxed (effect) 0.038496 0.071912 4.4704
0.0060838 | -41.786 134.05
Happy (effect) 0.042526 0.076506 44714
0.00023878 | 8.3795 132.76
Euphoric (effect) 0.022449 0.057599 4471
0.0002404 | 8.7123 132.66
Uplifted (effect) 0.0085529 | 0.033704 4.4723
5.359¢-05 3.8995 132.86
Hungry (effect) 9.6707¢-06 | 0.0011844 | 4.4724
0.0015152 | 21.669 132.83
Sleepy (effect) 0.00047604 | 0.0077339 | 4.4722
0.00025075 | 8.2043 132.61
Giggly (effect) 0.0077477 | 0.032992 44716
0.0003909 | 10.832 132.59
Creative (effect) 0.0058886 | 0.028636 4.4729
9.0745e-05 | 5.1959 132.97
Focused (effect) 0.0025502 | 0.018725 4.4729
0.00079308 | -15.263 132.52
Tingly (effect) 0.0057058 | 0.028629 4.4723
0.00031485 | -9.8299 132.92
Talkative (effect) 0.0028108 | 0.019956 4.4726
0.00063567 | 13.872 133.03
Aroused (effect) 0.0081604 | 0.036104 4.4735
7.0449¢-05 | 4.9032 133.03
Energetic (effect) 0.00055528 | 0.0085631 | 4.4726
0.0021682 | 24.733 133.47
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\ Independent variable \ R? \ Coefficient | Intercept
Ammonia (flavor) 1.2323e-05 | -0.0014564 | 4.4724
0.00049442 | -13.484 132.48
Apple (flavor) 0.00044285 | 0.0076834 | 4.4725
0.00051784 | -12.144 132.71
Apricot (flavor) 2.7257e-05 | -0.0018728 | 4.4724
0.0003244 | -9.4437 132.78
Berry (flavor) 0.0028148 | 0.019503 44728
0.00056024 | -12.718 132.65
Bluecheese (flavor) 1.7e-05 -0.001566 4.4724
4.5458e-06 | -1.1836 132.87
Blueberry (flavor) 0.00083317 | 0.01018 4.4725
7.0569¢e-06 | 1.3694 132.88
Butter (flavor) 0.0034111 | 0.022072 4.4726
0.00092131 | -16.766 132.73
Cheese (flavor) 1.6265e-05 | -0.0013119 | 4.4724
0.00044452 | -10.025 133.05
Chemical (flavor) 3.5802e-06 | 0.00071982 | 4.4724
0.00073777 | -15.103 132.61
Chestnut (flavor) 0.00016885 | 0.0054723 | 4.4726
6.656e-05 -5.0219 132.69
Citrus (flavor) 0.0050079 | 0.024962 4.4722
0.0026591 | -26.587 133.12
Coffee (flavor) 7.2459¢e-05 | -0.0033609 | 4.4723
0.00045863 | -12.359 132.48
Diesel (flavor) 0.014181 0.042787 4.4727
0.0019234 | -23.032 132.75
Earthy (flavor) 0.0015433 | 0.014993 44731
0.0011364 | -18.805 132.08
Flowery (flavor) 0.0086379 | 0.037133 4.4741
0.0027599 | -30.68 131.5
Grape (flavor) 0.0013254 | 0.013156 4.4725
0.0002574 | -8.4741 132.83
Grapefruit (flavor) 2.792e-05 -0.0020085 | 4.4724
0.00028752 | -9.4211 132.79
Honey (flavor) 0.00044452 | 0.0082842 | 4.4726
0.00051782 | -13.069 132.6
Lavender (flavor) 0.00087267 | 0.01151 4.4726
0.00060342 | -13.99 132.65
Lemon (flavor) 0.0019921 | 0.015532 44724
0.00080479 | -14.43 132.92
Lime (flavor) 0.0068624 | 0.031881 44732
0.00090869 | -16.957 132.47
Mango (flavor) 0.0024308 | 0.016433 44723
0.00017958 | -6.5284 13291
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\ Independent variable \ R? \ Coefficient | Intercept
Menthol (flavor) 2.435e-05 -0.002121 | 4.4724
0.00024694 | -9.8728 132.68
Mint (flavor) 0.0012013 | 0.01314 4.4727
0.00011646 | -5.9802 132.75
Nutty (flavor) 0.0051691 | 0.028626 44731
0.00072943 | -15.718 132.49
Orange (flavor) 0.00072341 | 0.009622 4.4725
0.0003568 | -9.8772 132.8
Peach (flavor) 0.0044251 | 0.022745 4.4722
0.00057319 | -11.965 132.97
Pear (flavor) 7.8112e-06 | 0.0013435 | 4.4725
0.00016774 | -9.1004 132.6
Pepper (flavor) 0.001613 0.01521 4.4725
0.0022708 | -26.379 132.66
Pine (flavor) 0.0024283 | 0.018261 4.4725
0.00043004 | -11.233 132.83
Pineapple (flavor) 0.0033673 | 0.020407 4.4725
2.6482e-07 | 0.26452 132.88
Plum (flavor) 2.7713e-05 | -0.0023201 | 4.4723
6.4809e-05 | -5.186 132.69
Pungent (flavor) 0.0017856 | 0.016323 4.4725
0.00014758 | -6.8592 132.85
Rose (flavor) 0.00033606 | -0.009067 | 4.4719
0.00052342 | -16.54 131.99
Sage (flavor) 8.8544e-06 | 0.0012324 | 4.4725
0.00013385 | -7.004 132.69
Skunk (flavor) 0.0036137 | 0.02196 4.4726
0.00081279 | -15.223 132.73
Spicyherbal (flavor) 0.0013691 | -0.015065 | 4.472
0.00019184 | 8.2424 133.08
Strawberry (flavor) 0.0022379 | 0.016527 4.4725
0.00022084 | -7.5885 132.85
Sweet (flavor) 0.0077677 | 0.033472 4.4727
0.00013406 | -6.4274 132.83
Tar (flavor) 0.0098585 | -0.04656 4.4708
0.000248 -10.794 132.49
Tea (flavor) 0.00064159 | -0.0088838 | 4.4725
0.00037224 | -9.8908 132.96
Tobacco (flavor) 0.0081295 | -0.036056 | 4.4718
0.00010757 | -6.0624 132.77
Treefruit (flavor) 0.0022721 | 0.019526 44732
0.00092394 | -18.2 132.15
Tropical (flavor) 0.0064829 | 0.029813 44727
0.00068752 | -14.191 132.75
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] Independent variable \ R® \ Coefficient | Intercept

Vanilla (flavor) 0.0053821 | 0.025227 4.4721
0.0010956 | -16.637 133.08

Violet (flavor) 0.0011898 | 0.015233 4.473
0.00030356 | -11.247 132.47

Woody (flavor) 0.00015766 | -0.0048562 | 4.4723
0.00072448 | -15.216 132.37
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