Exploring the Role of Contextualization in Dynamic Contextualized Word
Embeddings

Anubhav Agarwal
Princeton University
anubhava

Abstract

Contemporary natural language tasks often use
embeddings to extract information from text,
especially for downstream applications. How-
ever, many embedding techniques are non-
dynamic, meaning they do not capture ex-
tralinguistic context like time and social space.
There are techniques that incorporate linguistic
context (e.g., large language models like BERT
and GPT), and dynamic embeddings can par-
tially incorporate time and social space. We
seek to replicate the findings of Hofmann et al.
(2020), who propose Dynamic Contextualized
Word Embeddings (DCWE:s) as a technique for
incorporating both linguistic and extralinguistic
context by combining a pretrained contextual
language model and a joint model of time and
social space. After replicating their findings,
we extend their work to a downstream senti-
ment analysis task in two ways: we consider
multiple contextual models (e.g., GPT), and
we explore the effect of a dynamic component
on non-contextual embeddings created by tra-
ditional embeddings systems (e.g., Word2Vec).
While we replicate the baseline findings, we
find that the addition of DCWE is not beneficial
for the other contextual embeddings. Further-
more, non-contextual embeddings performed
substantially worse than the baseline.

1 Introduction

Word embeddings are a critical development in
expanding the scope of the tasks addressable by
NLP. A litany of embedding techniques now exist.
Traditional methods like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) compute
embeddings statically, representing the word’s use
in an entire corpus with a singular vector. While
helpful in representing text in certain tasks, this
approach to language modeling fails to account
for changes in immediate textual context (e.g., the
same word having different meanings in different
sentences), as well as extralinguistic factors that

Rohan Jinturkar
Princeton University
rohanj

Henrique Schechter Vera
Princeton University
hvera

may affect the text being considered (e.g., temporal
or social variations).

Other models have been developed that aim to
solve both issues. Contextual models, like BERT
(Devlin et al., 2019), GPT (Radford et al., 2019),
and ELMo (Peters et al., 2018) create contextual
embeddings that vary based on the immediate lin-
guistic context of the text that the word occurs in.
Furthermore, techniques known as dynamic em-
beddings represent words as vectors that change
based on time (Rudolph and Blei, 2018) and so-
cial context (Zeng et al., 2018). However, the two
families of techniques exist independently, posing
several challenges. Not only is it difficult to as-
certain which type of model is preferable for an
individual task (e.g., should a system use dynamic
or contextual embeddings), but most models have
specific limitations that prevent them from captur-
ing the full scope of any dataset (for example, most
dynamic embedding techniques can capture either
temporal or social context, but not both).

With the growing prominence of embeddings for
downstream NLP tasks, it becomes increasingly
important to combine the benefits offered by in-
dividual techniques to better capture the semantic
meaning of a corpus. The work by Hofmann et al.
(2020) represents a significant step in pursuit of
that goal. In their proposed system of Dynamic
Contextualized Word Embeddings (DCWEs), non-
contextualized embeddings are first modified to in-
corporate extralinguistic contexts and then passed
through a large Pretrained Language Model (PLM)
to incorporate linguistic context. This pipeline
enables the creation of embeddings that are both
dynamic and contextual in nature. Notably, the
authors observe general improvements across the
board in masked language modeling perplexity, as
well as in sentiment analysis performance.

The performance of the model technique pro-
posed by Hofmann et al. (2020) offers interesting
conclusions regarding embedding creation. In this

et - 1
) a(k)
o 1

f\a

Figure 1: [Adapted from (Hofmann et al., 2020)]. Dy-
namic Contextualized Word Embeddings (dimension-
ality: 768). Each static embedding é*) is mapped to

a dynamic embedding e() by some function d that in-

corporates time and socml context. The points scattered
around ez(f) are contextualized versions of &(¥). Tem-
poral and social space variability are captured by the

variability in ¢).

paper, we conduct several ablation studies beyond
a replication of their model to answer two key ques-
tions:

1. Does BERT, which was the PLM used for the
paper, perform better than other competing
PLMs?

2. How does the performance of dynamic con-
textualized embeddings compare to dynamic
non-contextual embeddings generated from
techniques like Word2Vec?

To answer these questions, we introduce four mod-
els: GPT-2, RoBERTa, Word2Vec, and GLoVe. For
each model, we conduct a downstream sentiment
analysis task on embeddings created both with and
without the dynamic component. Alongside our
BERT baseline, we perform a series of comparisons
that lend to better analysis of the contributions of
each individual component of DCWEs.

2 Related Work

2.1 Opverview of “Dynamic Contextualized
Word Embeddings”

Our work builds upon the Dynamic Contextualized
Word Embeddings technique (DCWE) proposed
by Hofmann et al. (2020). This model uses a tra-
ditional contextual embedding as the base, with
modifications to accommodate temporal and so-
cial context. Additional systems that contribute to

the workings of DCWE are also discussed in later
sections.

For DCWEs, Hofmann et al. (2020) follow a
two stage system. Words are first injected with "dy-
namic” information based on the time and social
context of the individual data point. They are then
passed through a contextual embedding language
model to alter the embeddings based on their im-
mediate linguistic surrounding. The overview of
the model is as follows.

Ltask

A

e

Figure 2: [Adapted from (Hofmann et al., 2020)]. The
initial words z are used to generate embeddings e.
The social and temporal context s; and t; (represented
through Graph Attention Networks) are used to generate
0;5. Lastly, the two embeddings are concatenated and
passed into the model, with the contextualizer’s output
being used to compute the task-specific loss.

With a set of words ["], the model de-
rives a set of corresponding non-contextual embed-
dings [e!, e"]. Since the model uses a PLM
(BERT), the non-contextual embeddings are com-
puted using the pretrained lookup table that maps
words to embeddings. Let each stage of the model
then be described by two functions, depicted in
Equations 1 and 2.

d(:Ek, Si,tj) = ek + ij (1)

This function combines the initial pretrained em-
bedding with a vector o” ;; that denotes the vector
offset from the non-dynamic embedding that is spe-
cific to the unique s; and ¢;. However, the authors
do make a modification to the ofj term such that
it follows the distribution of; ~ A/(0, A, 'T). This
is done by adding a regularization term during the
training step.
The second function is as follows:

E<l€ E>k) (2)

k
hij :PLM(1]7 ij 0 ig

In this function, hi-“j represents the final dynamic
contextualized embeddings, efj represents the out-
put of d, and F;; represents the context before and
after a given token. This equation represents the
process of contextualizing the dynamically com-
puted vectors. Using a PLM for this step was par-
ticularly advantageous to the authors, as it allowed
for the model to be easily adapted for downstream
tasks by simply adding one layer to the contextual-
izing model.

The final part of the model is the calculation
of ofj based on the values of s; and ¢;. This
term was included in the above equations, but
the calculation is as follows. The model creates
a set of time-specific feed-forward networks and
passes a vector created by concatenating e* and Sij
through this network to get ofj. To compute the s;;
vector, the model represents the community” of
the author through a time-specific graph attention
network (GAT) as proposed by Velickovic et al.
(2017) to encode the social community graph into
a vector. Then, to model the temporal drift, the
model imposes a random walk over ofj such that
of’j ~ N(ofj, A, 'I), where j/ = j—1 (Bamler and
Mandt 2017, Rudolph and Blei 2018). The random
walk prior ensures that the dynamic embeddings
change smoothly over time.

The training process for this model is straightfor-
ward, since the inclusion of BERT as the PLM
means only one task-specific layer needs to be
added. Hofmann et al. (2020) use four datasets
to train DCWESs: ArXiv, Ciao, Reddit, and Yelp.
They run a series of tests to determine the effect
of these dynamic components when compared to
the normal contextual embeddings. They observe a
masked language modeling perplexity that is simi-
lar, if not better, than non-dynamic contextualized
word embeddings, indicating some success with
the introduction of extralinguistic information. Fur-
thermore, and particularly of note to this project,
the authors note a uniform increase in performance
that is statistically significant for the DCWE embed-
dings in a sentiment analysis task when compared
to BERT embeddings with no dynamic component.

2.2 Related Work Regarding our Ablation
Study

We aim to expand upon Hofmann et al. (2020) by
changing the underlying model, with the goal of
comparing contextual and non-contextual models.
Traditional non-contextual models like GloVe (Pen-

nington et al., 2014) and Word2Vec (Mikolov et al.,
2013) compute static word embeddings, i.e., they
represent each word with a single vector. As Hof-
mann et al. (2020) explain, this method of modeling
semantics ignores the variability of word mean-
ing across different contexts. On the other hand,
contextual models incorporate linguistic context
by mapping type-level representations to token-
level representations (McCann et al., 2017). Con-
textual models like GPT-2 (Radford et al., 2019),
BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019) represent words as vectors that can
vary across contexts. We thus choose to exam-
ine both contextual and non-contextual models to
understand the importance of this contextual com-
ponent.

Additionally, exploring the impact of model ab-
lations on the dynamic component is helpful given
the emergence of lexical semantic change detec-
tion in NLP research (Tahmasebi et al., 2018, Du-
bossarsky et al., 2019, Schlechtweg et al., 2017).
Many methods on lexical semantic change detec-
tion also use static embeddings (Kim et al., 2014,
Kulkarni et al., 2014), albeit with modeling disad-
vantages (Bamler and Mandt, 2017), so it is helpful
for our ablation study to investigate them.

3 Statement of Purpose

Hofmann et al. (2020) propose a method to capture
both temporal and social context as an additional
layer on a pretrained BERT model and highlight
potential application scenarios (masked language
modeling and sentiment analysis) on four English
datasets. In this paper, we focus on sentiment analy-
sis. We reproduce the baseline results of DCWE on
the Yelp dataset and present four model ablations:
two contextual and two non-contextual.

4 Approach

Dataset The dataset choice for this project was
constrained by the need to have samples tagged
with their publication time and social context. In
pursuit of this information, and because of the ease
of transferring available pre-processing code, we
choose to use the Yelp dataset. Yelp consists of
795,661 reviews. Critically, this dataset has ex-
plicit friendship relations that can be used to create
a directed graph between users that is necessary
to create the s;; component. In order to perform
binary sentiment analysis on this data, we modify
the data such that one/two star ratings become neg-

ative, four/five star ratings become positive, and
three star ratings are discarded. We randomly split
this dataset into 70% train, 10% development, and
20% test. We present more information about the
dataset and the directed graph in Table 1.

Experiments We conduct two kinds of experi-
ments in this paper. The general pipeline for each
type are listed below.

1. Contextual Embeddings

(a) Extract pretrained embeddings from the
contextualizing model’s lookup table.

(b) Use pretrained embeddings to compute
the dynamic component.

(c) Send pretrained embeddings injected
with dynamic information into the con-
textualized model.

(d) Train the sentiment analysis model with
these embeddings to compare down-
stream task performance against paper
baselines.

2. Non-contextual Embeddings

(a) Train non-contextual embeddings on the
entire corpus.

(b) Apply the dynamic component to the
non-contextual embeddings.

(c) Train the sentiment analysis model with
these embeddings to compare down-
stream task performance against paper
baselines.

As described in section 2, the general pipeline
of the DCWE model involves generating non-
contextual embeddings, adding a temporal and
social component to the embedding and passing
that embedding through the contextualizing model
(BERT in the paper). However, there are certain
changes that have to be made in order to facili-
tate consideration of non-contextual embeddings.
Namely, because unique embeddings are not cre-
ated for each individual sample’s context, we do not
pass embeddings through a contextualizing layer as
an intermediate step before downstream training.

5 Implementation

We build upon the codebase provided by Hofmann
et al. (2020). The following section describes the
pipeline followed by the existing codebase for the
task of training DCWE on the Yelp Dataset for
sentiment analysis.

Dataset Pre-processing We remove all dupli-
cates, as well as all datapoints with fewer than
ten words. Furthermore, because BERT can only
accept 512-dimensional inputs, we truncate any re-
views longer than that length by taking the first and
last 256 words. We further tokenize the words for
input into the PLMs.

Pretrained Language Models The many PLMs
used throughout our paper are all implemented
through the transformers library in Python.
transformers provides each model, and also
allows for initialization of the models based on the
final pretrained weights, which were used in this
project. Furthermore, since each model requires
a different form of tokenization, we also use the
included tokenizers within the library during our
dataset pre-processing.

Embedding Calculation With the model
selected through the transformers li-
brary, we access the internal lookup table
for each model tested using the respective
get_input_embeddings () function. This
gives us the non-contextual embeddings e*. The
social component is then calculated as described
above and added to the non-contextual embedding
vector. Finally, to obtain our embedding, we pass
these dynamic embeddings into our model.

Sentiment Analysis Modifications Since we
train on a sentiment analysis task, we add two ad-
ditional fully connected layers to calculate a sen-
timent score. The first layer is a set of 100 fully
connected nodes, which is passed through a tanh
activation function and a 0.2 Dropout layer. The
second layer is one fully connected node that is
passed through a sigmoid activation function. This
outputs a sentiment score, which is used to create
the loss function that trains the network.

Models All of the models used in conducting
the comparative studies are described in the sec-
tion below. Notably, in addition to the baseline
(BERT), we evaluate on Word2Vec, GloVe, GPT-2
and RoBERTa. In all of these settings, we analyze
the effect on the downstream sentiment analysis
task.

* BERT: Proposed by Devlin et al. (2019),
BERT is a contextual transformer-based
model, pretrained on the dual objectives of
masked language modeling and next sentence

Linguistic

Social Temporal

Dataset |D| Unit x| Unit

[S] le]

Hd Hrx p Unit |T| t1 t‘7-|

YELP 795,661 Review 151.59 User 5,203 223,254 45.17 2.83 .009 Year

10 2010 2019

Table 1: Dataset statistics. |D|: number of data points;

nodes in network;

X| : average number of tokens per text;
E|: number of edges; ud: average node degree; .: average shortest path length between two

S|: number of

nodes; p: network density; |T'|: number of time points; ¢;: first time point; ¢|7|: last time point.

prediction. We initialize it similarly to the pa-
per, with the only modification being that we
use DistilBeRT due to time constraints (Sanh
et al., 2019).

* Word2Vec: Mikolov et al. (2013) propose
Word2Vec as a two-layer neural network to
learn word associations from text, where each
word is represented by a unique vector. No-
tably, Word2Vec is trained on the entire cor-
pus, creating global vectors, instead of unique
contextual relationships. This requires some
changes to the training loop, which are de-
scribed above. We use the Gensim implemen-
tation (Rehtfek and Sojka, 2010).

* GloVe: Pennington et al. (2014) propose
GloVe as an unsupervised algorithm to de-
velop word representations. Training is per-
formed using aggregated word co-occurence
matrices. This is based on the assumption that
co-occurrence probabilities encode meaning.
Similar to Word2Vec, changes are made to
the model in order to compare non-contextual
embeddings. We use the Stanford NLP imple-
mentation.

« RoBERTa: Liu et al. (2019) present
RoBERTaA, a bidirectional transformers model
that uses a masked language modeling training
objective, similar to BERT. However, contrary
to BERT, the masking occurs directly during
pre-training, rather than during the training
loop. RoBERTa is a contextual word em-
bedding structure, which allows us to use the
same setup as the original paper with a con-
textual model substitution (roberta-base).

e GPT-2: Radford et al. (2019) propose GPT-2
as a self-supervised transformers model that
is trained using a causal language modeling
objective (predicting the next word in sen-
tences). This means that, contrary to models

like BERT, GPT-2 is auto-regressive and there-
fore incorporates context from only the left of
the token. However, this still yields contex-
tualized embeddings, which allows us to use
the same general structure as the paper, with
a model substitution (distilgpt2) for GPT-2.

Technical Requirements All of the training
above is completed using a GPU-accelerated in-
stance of Colab Pro. We provide the training times
in the results section, but most models take approx-
imately 12 hours to complete 2 epochs.

6 Reproduction of Paper Baselines

To begin our investigation of the impact of contex-
tualization on dynamic contextualized word em-
beddings, we first reproduce the baseline results
of Hofmann et al. (2020). We provide a summary
of the F1 scores across the contextualized word
embeddings (CWEs) and dynamic contextualized
word embeddings (DCWEs) on a sentiment analy-
sis task below.

For reference, we run both CWEs and DCWEs
for 2 epochs (compared to 2 epochs for CWEs and
3 epochs for DCWEs in Hofmann et al. (2020)).
We use a learning rate of 3e-6, regularization con-
stant (for DCWE only) of le-1, batch size of 4, and
dimension of the social component of 768, consis-
tent with Hofmann et al. (2020). The approximate
training time is 648.1 minutes for CWEs, and 754.7
minutes for DCWE:s.

Paper Us
Model Dev Dev
DCWE 0.969 0.968 0.912 0.911
CWE 0.967 0.966 0.911 0.910

Test Test

Table 2: F1 score on sentiment analysis for Yelp dataset
(higher is better). DCWE: dynamic contextualized word
embeddings; CWE: contextualized word embeddings.

We are able to reach a similar conclusion as

Hofmann et al. (2020), in that dynamic contextu-
alized word embeddings achieve very slight, but
significant improvements over the already strong
performance of non-dynamic BERT. As expected,
our accuracy on the Yelp dataset is slightly lower
because we use distilBERT instead of BERTgasE
(uncased) in the original paper, due to time con-
straints. We also train CWE for 2 epochs whereas
the original paper trains for 3 epochs.

7 Ablations

We split this section into an analysis of contextual-
ized models and an analysis of non-contextualized
models. The details regarding our model training
parameters can be found in the Appendix.

7.1 Contextualized Models

Hofmann et al. (2020) aim to build dynamic con-
textualized word embeddings that are based on
the BERT PLM. We extend their work to under-
stand if other PLMs achieve better performance.
This is accomplished by changing the contextual-
izer to other pretrained models, namely GPT-2 and
RoBERTa. Using the t ransformers library, we
can exchange the pretrained model and follow the
same process as was done for BERT. We report the
results with and without the dynamic component
for each contextualizer in Table 3.

Model Dev Test
BERT (DCWE) 0912 0911
BERT (CWE) 0911 0.910
GPT-2 (DCWE) 0.505 0.508
GPT-2 (CWE) 0.517 0.518
RoBERTa (DCWE) 0.962 0.962
RoBERTa (CWE) 0.967 0.968

Table 3: F1 score on sentiment analysis for Yelp dataset
across all contextual models (higher is better). DCWE:
dynamic contextualized word embeddings; CWE: con-
textualized word embeddings.

The results seem to indicate that the dynamic
component does not have a significant impact on
the F1 score for non-BERT models. Additionally,
GPT-2 performs substantially worse than the base-
line both with and without the dynamic component.
This may be due to the fact that ROBERTa and
BERT are bidirectional encoders, whereas GPT-2
is unidirectional (only examines words that have
already been seen in a sentence).

It is also evident that RoOBERTa outperforms the
baseline both with and without the dynamic compo-
nent. Although the comparison is not direct since
we use distilBERT instead of BERTgasE, the result
is still surprising, as distilBERT retains 97% of the
performance (Sanh et al., 2019). This is a strong
indication that RoBERTa may be a better choice
for further analysis of the dynamic component.

7.2 Non-contextualized Models

We explore the impact of using models without a
contextualizing component.

Model Dev Test
Word2Vec (DNWE) 0.464 0.463
Word2Vec (NWE) 0.461 0.461
GloVe (DNWE) 0.464 0.341
GloVe (NWE) 0.454 0.329

Table 4: F1 score on sentiment analysis for Yelp dataset
across all non-contextual models (higher is better).
DNWE: dynamic non-contextualized word embeddings;
NWE: non-contextualized word embeddings.

The results do indicate some benefit being con-
ferred by the dynamic component, in line with the
contextual model results. However, the embed-
dings perform substantially worse than the base-
lines. We think this is because the pipeline we
created to build non-contextual embeddings is re-
liant on tokenized data. The tokenization likely
splits some words, which may interact poorly with
global vectors trained on non-tokenized data. This
presents an avenue for future work, where we could
recreate the dataset to better interact with noncon-
textual embeddings.

8 Error Analysis

In addition to the F1 scores presented above, we
conducted a sequence of error analyses to high-
light the differences between the contextualizing
models.

Methodology There are a sequence of additional
steps to conduct the error analysis and generate
the plots that follow. In the initial analysis, we
train each of the three models. Then, using the
test split of the dataset, we intercept the model
before the dynamically computed embeddings are
passed into the fully-connected layer. We compute
an average embedding for the tokens over the en-
tire test dataset for each of the three models. This

gives us a general representation of the embedding
generated by each model. We identify tokens that
were present in the reviews that ROBERTa, our best
model, predicted correctly, but that BERT and GPT-
2 failed to predict correctly. We then analyze the
most frequent tokens in these reviews, excluding
punctuation characters and stopwords. Finally, we
conduct a two-component PCA to generate visual-
izations for each embedding in the model.

Results In total, there are 1,984 reviews that
RoBERTA predicted correctly that GPT-2 and
BERT predicted incorrectly. A substantial num-
ber of these reviews have two primary character-
istics: either they are mixed leaning negative, or
negate positive terms, e.g. ’not good.” Almost all
of the reviews that are incorrectly predicted by the
other two models were negative reviews. The ten
most common tokens in this set after removing
stopwords and punctuation are ’cat’, ’text’, *feel’,
“cell’, ’'mind’, "mini’, *water’, *point’, ’people’, and
’stud.” There does not appear to be a significant uni-
fying factor or distinct ’tone” in any of these tokens.
This seems in line with the models failing on the
less obviously positive or negative reviews.

To understand why RoBERTa potentially under-
stood” these reviews better, we conduct a principal
component analysis (PCA) along two components
to plot the embeddings for these tokens, along-
side their five closest neighbors according to each
model. These are contained below for the first two
tokens (‘cat’ and ‘text’).

2-Comp PCA of vector Embedd| from BERT for "cat"

® r=commendations
00003 w2y

® rice
® weekend
® falented
o at

00002
00001

0.0000 S

Principal Companent 2

—0.0001

-0.0002

-0.00025 000000 000025 000050 000075 000100 000125 000150
Principal Component 1

Figure 3: PCA for Bert “Cat”

PCA Analysis The GPT-2 and BERT embed-
dings seem to group words that are incredibly simi-
lar (e.g., text and message), while RoOBERTa groups
words that lack visible similarity. However, given

2-Component PCA of Vector Embeddings from GPT2 for "cat"

® ats
020 . i
® cats

® aiching
® catcher
e at

Principal Companent 2

—0.05

-0.10

-0.10 -005 0.00 005 010 015 020
Principal Companent 1

Figure 4: PCA for GPT-2 “Cat”

2-Component PCA of Vector Embeddings frem ROBERTA for "cat”

@ tones
overcrowd

® ridiculously

® overlooked

® bodily

e ats

Principal Component 2

005 &

-010 005 000 005 010 015 020 025
Principal Companent 1

Figure 5: PCA for RoBERTa “Cat”

that ROBERTa seems to make better predictions
based on these embeddings, it is possible that the
model is able to make hidden connections between
words based on their context, thus gaining addi-
tional “information.” Therefore, the fact that the
closer embeddings are less visibly related could be
an advantage for RoOBERTa.

2-C PCA of Vector Embeddings from BERT for "text"

e amazingly
neighborhoad
& indiidual
0.0008 e freplace
® flavors
® ftext

0.0006

0.0004

Principal Component 2

0.0002

0.0000

.
00002 1
.

-0.0002 00000 00002 00004 00006 00006 00010 00012
Principal Component 1

Figure 6: PCA for BERT “text”

2-Component PCA of Vector Embeddings from GPT2 for "text"

. ® text
04 texts
textual
message
background
'

nt2

Principal Compone;

10
Principal Companent 1

Figure 7: PCA for GPT-2 “text”

2-Component PCA of Vector Embeddings from ROBERTA for "cat”

ent 2

Principal Compan

symptoms .
.
abruptly
participation
iom

catching

015 -010 -005 0.00 005 010 35 020
Principal Companent 1

Figure 8: PCA for RoBERTa “text”

9 Conclusion

Modern NLP systems are often reliant on embed-
dings to represent meaning for tokens. However,
many embeddings tend to lack context, both lin-
guistic (surrounding text) and extralinguistic (time,
community). These forms of context provide valu-
able information that can increase model perfor-
mance for certain tasks.

In this paper, we investigate DCWE, a dynamic
contextual embedding approach proposed by (Hof-
mann et al., 2020). We replicate the authors’ base-
lines and find consistent results given our train-
ing limitations. Next, we perform ablation studies
based on the underlying embedding model. DCWE
was initially conceived using BERT, but we con-
sider Word2Vec, GloVe, RoBERTa, and GPT-2
as other embedding models that can be injected
with dynamic components. GPT-2 performs sig-
nificantly below the baseline, though it does join
the contextual models in performing better than the

non-contextual embedding systems (which were
substantially less performant, as expected). Fur-
thermore, while GPT-2 likely suffers from being
auto-regressive, and therefore being less able to
incorporate context, we discover that RoBERTa
performs substantially better than our baseline, jus-
tifying its future use in DCWE experimentation.
Furthermore, not every model benefits from the
dynamic component’s inclusion. While our base-
line results align with Hofmann et al. (2020) in
that the dynamic embeddings from BERT perform
better, the other two models do not benefit from the
dynamic embeddings.

Future work can expand our ablation study to
other datasets to determine whether the social and
time components can be adequately captured in
non-review contexts. Furthermore, we would like
to extend the dynamic component/ablation analysis
beyond sentiment analysis to determine if the value
conferred by this component persists with other
NLP tasks.

Acknowledgments

We would like to thank Professor Narasimhan for
his helpful feedback and support throughout the
class, as well as Valentin Hoffman for providing
clarifications on the DCWE paper.

References

Robert Bamler and Stephan Mandt. 2017. Dynamic
word embeddings. In Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 380-389. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Haim Dubossarsky, Simon Hengchen, Nina Tahmasebi,
and Dominik Schlechtweg. 2019. Time-out: Tem-
poral referencing for robust modeling of lexical se-
mantic change. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 457-470, Florence, Italy. Association
for Computational Linguistics.

Valentin Hofmann, Janet B. Pierrehumbert, and Hin-
rich Schiitze. 2020. Dynamic contextualized word
embeddings.

https://proceedings.mlr.press/v70/bamler17a.html
https://proceedings.mlr.press/v70/bamler17a.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.18653/v1/P19-1044
https://doi.org/10.48550/ARXIV.2010.12684
https://doi.org/10.48550/ARXIV.2010.12684

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of lan-
guage through neural language models. In Proceed-
ings of the ACL 2014 Workshop on Language Tech-
nologies and Computational Social Science, pages
61-65, Baltimore, MD, USA. Association for Com-
putational Linguistics.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2014. Statistically significant detec-
tion of linguistic change.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural
Information Processing Systems, volume 30. Curran
Associates, Inc.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Radim Rehtifek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45—
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Maja Rudolph and David Blei. 2018. Dynamic embed-
dings for language evolution. In Proceedings of the
2018 World Wide Web Conference, WWW 18, page
1003-1011, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter.

Dominik Schlechtweg, Stefanie Eckmann, Enrico San-
tus, Sabine Schulte im Walde, and Daniel Hole. 2017.
German in flux: Detecting metaphoric change via

word entropy. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning
(CoNLL 2017), pages 354-367, Vancouver, Canada.
Association for Computational Linguistics.

Nina Tahmasebi, Lars Borin, and Adam Jatowt. 2018.
Survey of computational approaches to diachronic
conceptual change. CoRR, abs/1811.06278.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks.

Zigian Zeng, Xin Liu, and Yangqiu Song. 2018. Biased
random walk based social regularization for word em-
beddings. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, IJICAI’ 18,
page 4560-4566. AAAI Press.

https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.3115/v1/W14-2517
https://doi.org/10.48550/ARXIV.1411.3315
https://doi.org/10.48550/ARXIV.1411.3315
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://proceedings.neurips.cc/paper/2017/file/20c86a628232a67e7bd46f76fba7ce12-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/20c86a628232a67e7bd46f76fba7ce12-Paper.pdf
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.48550/ARXIV.1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.48550/ARXIV.1802.05365
https://doi.org/10.48550/ARXIV.1802.05365
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1145/3178876.3185999
https://doi.org/10.1145/3178876.3185999
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.18653/v1/K17-1036
https://doi.org/10.18653/v1/K17-1036
http://arxiv.org/abs/1811.06278
http://arxiv.org/abs/1811.06278
https://doi.org/10.48550/ARXIV.1710.10903

Appendix A: Embedding Training - Hyperparameters

Model Dev Test n. b [Aa T

BERT (DCWE) 0.912 0911 2 4 3e-6 le-1 7547
BERT (CWE) 0.911 0910 2 4 3e-6 - 648.1
GPT-2 (DCWE) 0.505 0.508 2 4 3e-6 le-1 502.6
GPT-2 (CWE) 0.517 0518 2 4 3e-6 - 665.6
RoBERTa (DCWE) 0.962 0962 2 4 3e-6 le-1 767.9
RoBERTa (CWE) 0.967 0968 2 4 3e-6 - 704.8
Word2Vec (DNWE) 0.464 0.463 2 4 3e-6 le-1 423.1
Word2Vec (NWE) 0.461 0461 2 4 3e-6 - 3794
GloVe (DNWE) 0.464 0341 2 4 3e-6 le-1 295.8
GloVe (NWE) 0.454 0329 2 4 3e-6 - 2642

