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Abstract

We extend Randomized Single Elimination Bracket (RSEB) [3] to tournaments with multiple prizes,
creating two new tournament ranking rules: Randomized Complete Bracket (RCB) and Randomized Recursive
Bracket (RRC). We prove various guarantees for manipulability and fairness under these rules. We first show
that Randomized Complete Bracket is 2—SNM-% and that both RCB and RRB are 2—SNM-% for a subclass of
prize vectors we call Binary Power-of-Two Prize Vectors. We then show that both rules are manipulable under
the Borda vector presented in [[1]] and that neither is cover-consistent or consistent under expectation. Finally,
we provide a promising partial proof and empirical results towards showing that Randomized Complete
Bracket is 2—SNM—% for all prize vectors.

1 Introduction

A tournament rule maps the results of (72‘) pairwise matches by n teams to a (possibly random) ranking on
those teams. Tournaments have been studied previously in the context of algorithmic game theory, where
previous work has examined how to design tournament rules that are both fair and minimally manipulable
(see, for instance, [1} 2, 3]]). We continue this work by building off of [1l] which introduced the idea of
tournaments with multiple winners who receive (potentially) different prizes (prior work had considered
tournaments with a single winner). We extend the tournament rule Randomized Single Elimination Bracket
(RSEB) described in [3]] (which considers tournaments with a single winner) to two new tournament rules,
Randomized Complete Bracket (RCB) and Randomized Recursive Bracket (RRB), which can award prizes
to multiple teams by determining a ranking over those teams. We then examine RCB and RRB to show the
following (see definitions for terms below in Section 1.1):

* RCB is 2—SNM—%, meaning any two teams cannot increase their expected collective prize winnings by
more than %

* RCB and RRB are 2—SNM—% (which is optimal over Condorcet-Consistent tournament rules) for the
BPoT (“Binary Power-of-Two”) subclass of prize vectors

* RCB and RRB are not consistent under expectation and are not cover-consistent

* The Borda prize vector is manipulable under RCB and RRB (unlike the tournament rule in [1]])

1.1 Preliminaries

The following definitions align with current literature on tournament rules. Definitions 4, 8, and 9 are
specific to this paper. All other definitions are from [[1]] with minor revisions. Note that for most of our results
(all except the ones in Section 3: Fairness), we assume that the number of teams n = 2* for some positive
integer k for ease of calculation, though it seems likely that our results would extend more generally to other
tournaments.

Definition 1 (Tournament). A tournament T on n teams is a complete, directed graph on n vertices whose
edges denote the outcome of a match between two teams. Team i beats team j if the edge between them points
from i to j.



Definition 2 (Tournament Ranking Rule). A tournament ranking rule r is a function that maps tournaments
T to a distribution over rankings o, where ol.(u) denotes the random variable that is the ranking of team u
under rule r, applied to tournament T'. We will refer to tournament ranking rules simply as tournament rules.

Definition 3 (Prize Vector). A prize vector is a vector p' € [0, 1]|" such that p; > p;+1 for all i. Under a
prize vector P, the team ranked i'" receives prize p;.

Definition 4 (Binary Power-of-Two (BPoT) Prize Vectors). A vector p’ € {0, 1}" with n = 2™ total entries
is BPoT if for 2F total entries, p; = 1, for some integer 0 < k < m.

Definition 5 (Borda Prize Vector). The Borda prize vector for a tournament with n teams is the prize vector

with n entries where p; = 7=

Definition 6 (Bracket). A bracket B on n = 2" teams is a complete binary tree of height h whose leaves are
labelled with some permutation of the n teams.

Definition 7 (Randomized Single Elimination Bracket (RSEB)). First we select a bracket B uniformly at
random from all n! possibilities. The outcome of a bracket B under an RSEB tournament T is the labelling
of internal nodes of B where each node is labelled by the winner of its two children under T'. The winner of
B under T is the label of the root of B under this labelling. If n is not a power of 2, we define the random
single elimination bracket rule on n teams by introducing 2/1°92"1 — p, dummy teams who lose to all of the
existing n teams. Note RSEB does not produce a ranking of teams.

Definition 8 (Randomized Recursive Bracket (RRB)). For a tournament T on n teams (where n is power
of 2), let M be matches corresponding to a uniformly random perfect matching (i.e. exactly n/2 matches
are played, and every team plays in exactly one match). Let W be the winners and L be the losers. Let T'|g
be the induced subgraph of T on teams in set S. Recur on T |y with prize vector py = (p1, ..., p|W|) and,
separately, recur on T|1, with prize vector py, = (p|W|+1, ceey Dn)- If M is not power of 2, then in the first
round, let n/ = 2[log2n],

Create n' — n dummy teams who all lose to the original n teams, and match all of these dummy teams to
actual teams in the first round.

Definition 9 (Randomized Complete Bracket (RCB)). First select an ordering of teams ty,ta, ..., t,
uniformly at random from all n! possibilities. In the first round, have each team of odd parity t; play the
tiy1th team in the ordering. At each round of the bracket, recur on the induced ordering of winners and
ordering of losers. Note that this produces the following primary constraint of RCB: given two pairs a1 beats
b1 and ag beats by at the kth round of the bracket, if a1 plays as in the k + 1th round, by plays bs in the
k + 1th round.

Note that in the determinstic setting, an RCB bracket and final ranking is well-defined by the initial ordering of
teams since all randomization is done at the initialization of the bracket when producing the initial ordering.

Definition 10 (Nested Randomized King of the Hill (NRKotH)). In each round, a random "pivot" team is
chosen - teams that beat the pivot are placed into the winner set while teams that lose to the pivot are placed
in the loser set. All teams in the loser set are ranked lower than those in the winner set. The next round then
runs NRKotH on the winnder set and loser set - the result of this recursion is the ranking that the tournament
rule outputs.

NRKotH is the main tournament rule studied in [\I|] which is similar to Quicksort.

Definition 11 (Strongly Non-Manipulable (k-SNM-q)). A fournament rule r is k-SNM-«. if any set of k
teams cannot increase their expected collective prize winnings by more than a.

Definition 12 (Condorcet-Consistent). Team i is a Condorcet winner of a tournament T if i beats every
other team (under T'). A tournament ranking rule r is Condorcet-consistent if for every tournament I’ with a
Condorcet winner i, Plol.(i) = 1] = 1 (that team is ranked first with probability 1).



Definition 13 (Consistent Under Expectation). Let wy(u) be the set of teams that u defeats in tournament
T. Let ol.(u) be the random variable that is the ranking of team w under rule r, applied to tournament T. A
tournament rule is consistent under expectation if for all n, all tournaments T on n teams, and all u,

Elop(uw)] = n—|wr(u)]
In other words, if team u beats k teams in T, u is expected to rank above k teams.

Definition 14 (Cover-Consistent). Team i covers team j in tournament T if i beats j, and i beats every team
that j beats. A tournament ranking rule is Cover-Consistent if for all T, and all i, j such that i covers j in T,
Plol(i) < of:(j)] = 1. That is, whenever i covers j in T, rule r applied to T should output a ranking where
1 is ahead of j with probability 1.

1.2 Related Work

Several tournament rules have been shown to be 2—SNM—% on the one-winner prize vector (that is,
(1,0,0,...)). The main result of a paper from 2016 draws our attention to the RSEB tournament rule as one
such rule. [3]]

Theorem 1 ([3] Theorem 3.3). RSEB is 2—SNM—% onthe (1,0,0,...) prize vector.

Notably, RSEB does not extend as previously defined to arbitrary prize vectors since it does not produce a
ranking over all teams other than the winner. However, prior work [[1] has shown that it is possible to produce
tournament rules over arbitrary prize vectors that are 2—SNM—% and that it is the best possible guarantee of
pairs of colluding teams.

Theorem 2 ([1] Theorem 3.1). NRKoTH is 2-SNM-%. That is, for any prize vector in [0,1]", and any
underlying tournament T', no two teams can manipulate their match to gain expected prize money more than
1/3. Moreover, this is the best possible guarantee of any Condorcet-Consistent tournament ranking rule.

We extend this analysis of tournament rules that produce complete rankings for arbitrary prize vectors
by generalizing RSEB to create RCB and RRB. Another possible avenue for similar analysis would be a
generalization of Randomized Death Match, which described in [2] and is also 2-SNM—% on the (1,0,0,...)
prize vector ([2]] Theorem 5.2). We choose to focus on the RSEB generalization because of its desirable
property that every team plays the same number of matches, a property not seen in NRKoTH but potentially
necessary to practical tournaments. We leave analysis of Randomized Death Match to future work.

In addition to the desirable 2—SNM-% property, NRKoTH is strongly non-manipulable on the Borda prize
vector, which motivated our investigation into RCB and RRB on the Borda vector. Specifically, [1] Theorem
4.1 showed that NRKotH is £-SNM-0 for all £ < n on the Borda prize vector, which is a very strong property.
Additionally, NRKoTH is consistent under expectation ([1]] Theorem 4.3). We attempt to analyze the presence
of these desirable properties on extensions of RSEB to arbitrary prize vectors.

2 Manipulability
2.1 Concrete Results

Lemma 3. A pair of colluding teams can increase their collective prize winnings by at most 1 under RCB
and RRB

Proof. Consider teams ¢ and j. Say j beats 7 in tournament 7', and let T” be the tournament identical to T’
except j throws the match against i. Consider any instance of RCB or RRB run on 7" and 7”. If 7 and j do
not meet in this instance, their winnings are the same under 7" and under 7”. Now, say ¢ and j do meet. Let
D be the worst prize the winner of their match could attain, and p,, 11 be the best prize the loser of their
match could attain. Then, the worst collective winnings ¢ and j could have in 7" is p,,, + p,, and the best
collective winnings 7 and j could have in 7" is p1 + p;,+1. Thus, the most they could increase their collective
prize winnings by is p1 + Pm41 — Pm — Pn, Which is at most p; — p, (because p,, > pm+1), which is at
most 1. O



Lemma 4. A pair of colluding teams cannot increase their collective prize winnings if they win against
identical sets of teams (disregarding each other) under RCB or RRB.

Proof. A similar lemma is proved as Lemma 3.3 in [[1]] for NRKotH, which we present here for RCB and
RRB. Suppose that 7 and j are a pair of colluding teams, each of which wins against the teams in the set W
and loses against the set of teams in L, where W U L D [n] \ {¢, j}. Then we can see that the outcome of the
(i,7) match has no effect on the collective prize winnings of ¢ and j. If ¢ and j do not play each other in a
given play through of RRB or RCB, then the outcome of a match between them clearly does not affect their
collective prize winnings. If ¢ and j do play each other, let w denote the winner and ¢ denote the loser of that
match. In subsequent rounds of RCB or RRB, note that the identity of w and the identity of £ will not affect
whether w and ¢ win or lose matches since ¢ and j defeat exactly the same set of teams. Thus, w will attain
a certain prize p,, and £ will attain a certain prize py, so ¢ and j attain collective prize winnings of p,, + py
regardless of who wins the (7, j) match. O

Lemma 5. In RCB, a pair of colluding teams i and j cannot gain from collusion if s; € [1,n/2] and
sj € [n/2 + 1,n] (or vice versa) where s; is the slot team i is assigned to in the initial bracket. In other
words, © and j cannot gain from collusion if they are in different halves of the bracket.

Proof. Let 1 and j be the teams attempting to collude. Note that if ¢ and j only play each other in one of the
last games of the bracket (i.e. each of their log, nth games), ¢ and j cannot gain from collusion since the sum
of their prizes is the same no matter which team wins. In other words, ¢ and j will always get total winnings
Pk + Pr+1 for some k. Additionally, note that if ¢ and j are not in the same half of the bracket (slots [1,n/2]
or [n/2 + 1,n]), i and j are guaranteed not to play each other until the last games (if ever). Thus, i and j
cannot gain from collusion if they are in different halves of the bracket. 0

Theorem 6. RCB is 2-SNM—%.

Proof. First, we find the number of possible initializations of RCB in which colluding teams ¢ and j are not
placed in the same half of the graph. For a fixed location of i in the first half of the graph, there are n/2
possible locations for j in the second half of the graph. Since there are n/2 slots on each half of the graph,

and since ¢ could be on either the first or second half of the graph, this means there are 2 x (g)2 possible

positions for ¢ and j such that they are on opposite halves of the bracket. There are then (n — 2)! permutations

of the remaining teams to assign them to the remaining slots. Thus, there are overall ”72 (n—2)l = 2(7:11) n!
possible initializations such that ¢ and j are on different halves of the bracket.
Let k be the number of initializations of the bracket that cannot be manipulated by teams ¢ and j. By lemma

2, this implies there are at least k > ﬁn! > %' initializations for RCB that cannot be manipulated by ¢

and j. Additionally, note that the number of possible starting brackets is n!. Thus, the fraction of manipulable
games (which is equal to the probability that ¢ and j can collude and increase their collective winnings) is

1/2
summary, the total number of non-manipulable brackets k is & >

. Thus, by lemma 1, the expected total gains from collusion are at most 1 * %/,2 =1/2. In

n! > %' and the total number of

at most

2(nn71)

possible brackets is n!, so the fraction of possible brackets that are non-manipulable is % > 2"7:, = % and by

lemma 1, in each of the remaining n! — k < %‘ manipulable games, ¢ and j can only increase their winnings
by at most 1.
Thus, a pair of teams ¢ and j cannot increase their expected total winnings by more than 1/2. O

Theorem 7. RCB and RRB are 2-SNM-% on BPoT prize vectors.

Proof. For this proof, we will slightly abuse notation by saying a team ¢ “wins” if they get a prize
of 1 and “loses” if they get a prize of 0. This is an intuitive restatement of our prize vector, since any
binary prize vector can be alternatively written as a threshold rank at which teams become “winners” of prize 1.

It’s here that it becomes important we are specifically considering binary power-of-two vectors.
Consider the following lemma:



Lemma 8. Consider an RC B or RRB tournament using a BPoT prize vector with 2F entries of which 2°
have a prize of 1. A given team “wins” (gets a prize of 1) if and only if they win their first k — i matches

Proof. Because prize vectors are monotonically non-increasing, getting a prize of 1 under a tournament with
a BPoT prize vector amounts to being in the top S—; = 2= (=7 of teams. RCB and RRB subdivide teams
into two groups (winners and losers) each round, such that the top 27" of teams are always the set of teams
that won their first  matches, for » < k. Thus, the set of teams who get a prize of 1 under RC'B and RRB
with BPoT prize vectors are exactly those people that win their first £ — ¢ matches O

By Lemma 11, note that if a team loses any of their first k& — ¢ matches, they get a reward of O (i.e. they are
"eliminated"); otherwise, they get a reward of 1. In this way, we can see that RRB or RCB on a BPoT prize
vector with 27 ones is equivalent to splitting the 2¥ competitors into 2* subgroups of size 2% and running
RSEB on each of these subgroups, where the winner of each subgroup receives a prize of 1. Since RSEB is

2—SNM—%, it follows that no two teams within a subgroup can improve their collective winnings by more than

% in expectation, so no two teams in the entire tournament can improve their collective winnings by more

than % in expectation, proving the theorem.
We note that there is an alternative proof for this theorem that simply modifies Theorem 3.3 from [3]]
slightly, but we omit it because it is much longer and more complex. O

As mentioned above, previous work [[1]] shows that a certain tournament rule, Nested Randomized King of
the Hill, is nonmanipulable by any number of teams on the Borda prize vector p* which has entries p] = ;”:i
such that the team who comes in first place gets a reward of 1 and the team that comes in last gets a reward of
0. As such, it is reasonable to consider whether RCB might have a similar property - a counterexample can

show that this is not the case.

Theorem 9. RCB and RRB are manipulable under the Borda prize vector.

Proof. Consider the tournament 7 that consists of teams A, B, C, and D, where A beats B and C, B beats
C and D, C beats D and D beats A. We assert that B and D can collude. There are three possibilities to
consider, each occurring w.p. 1/3:

* A is paired with B, and C' with D. Regardless of collusion, B and D both lose the first round, and their
combined rankis 3 +4 =17

* A is paired with C', and B with D. Under 7', B goes on to lose against A and D goes on to lose against
C, yielding combined rank 2 + 4 = 6. If B throws so D wins, then B goes on to win against C' and D
goes on to win against A, yielding combined rank 1 + 3 = 4.

* A is paired with D, and B with C. Regardless of collusion, B and D both win the first round, and their
combined rankis 1+ 2 =3

Thus, if B and D play normally, we have it that their expected rank is %(7 + 6 + 3) = 16/3. If they collude,

their expected rank is %(7 + 4 4+ 3) = 14/3. Thus, because total payoff under the Borda prize vector is
proportional to expected rank [[1], B and D strictly gain from this manipulation. 0

2.2 Partial Results

As mentioned above, it has been proven that no tournament rule is 2-SNM-« for any o < % for the prize
vector (1,0,0,...,0) and therefore no tournament rule is 2-SNM-« for any o < % for every possible prize
vector [1]]. Previous work found that NRKotH was optimal in that it is 2—SNM-% for general prize vectors [1].

The natural question is therefore whether RCB is 2—SNM-% for general prize vectors. We were unable to
prove (or disprove) this claim, so we share our progress and some empirical evidence to show that this might
be an interesting question for future work.



2.2.1 Proofs
In [3], the authors use a coupling argument to show that RSEB is 2—SNM-% for tournaments with one winner,
and we attempted to use this approach to examine RCB (which is based on RSEB). Our argument which
loosely follows theirs is as follows:

Let T be a tournament over n teams, and suppose that arbitrary teams ¢, j consider whether to collude.
Consider (3, the set of all possible bracket initializations for RCB (note that |3| = n! since each possible
bracket corresponds to an ordering of the n teams). Then let B;; be the set of all B € 3 such that i and j
increase their collective prize winnings when RCB is initialized with bracket B.
|By]

18]

Lemma 10. Forany 0 < o < 1, if
prize vectors.

< a for every i, j under RCB, then RCB is 2-SNM-«. on general

Proof. In a given bracket B € (3, if ¢ and j collude in bracket B and increase their collective prize winnings
when RCB is initialized to bracket B, by Lemma 1, we know that they increase their collective prize winnings

by at most 1. Since an initialization for RCB is chosen uniformly at random, if l%j | < a, then there is at

most an « chance that ¢ and j can increase their collective prize by colluding, meaning that the expected
increase in their collective prize is at most «, implying that RCB is 2-SNM-a. O

Having proved Lemma 6, let B' = 3\ B;; (that is, B’ is the set of initial brackets where ¢ and j do not
increase their collective rewards by colluding). Our proof approach, following the one found in [3]], is to
construct injective maps o : B;; — B’. Consider first an alternate proof for theorem 2:

Theorem 11. RCB is 2-SNM-% on general prize vectors (an alternative proof for theorem 2)

Proof. Define the map o : B;; — B’ in the following way: for any bracket B € B;;, we know that, in B, ¢
and j increase their collective prize winnings by colluding. As seen earlier, this is impossible if ¢ and 5 are on
different halves of the bracket (that is, if one of them is in position [1, n/2] and the other is in position [n/2 +
1, n]). Suppose that j is in position k; Let B* be the bracket where each team is in the same position as in
bracket B except that j switched with the team at position (k; +n/2) mod n. We define 01 (B) = B*.
Note that o is injective because we can define its inverse; namely, for any B* in the image of o1, we can
recover a unique B € Bj; such that o1 (B) = B* by swapping j in B* with the element that is % positions
away from it. Since an injection B;; — B* exists, it follows that | B;;| < B*. Since 8 = B;; U B*, and

B;; N B* = (), it follows that Uféf | < % By Lemma 6, this proves the theorem. O

One could imagine then a similar proof that RCB is 2—SNM—%. We present the beginnings of such a proof:
though we were unable to complete the proof rigorously, it seems like a potentially promising approach that
could perhaps prove fruitful in the future:

Conjecture 12. RCB is 2-SN. % on general prize vectors.

Proof. To prove the theorem, it suffices to find two injective maps o1, 02 : B;; — B’ with disjoint images
since this would demonstrate that ‘%’f' < \B,’julmgfj).‘um o] < % First, define o1 to be the injective map
described in Theorem 7. To prove the theorem, it suffices to find an injective map o3 : B;; — B’ such that
the image of o2 does not share any elements with the image of o;. Unfortunately, we were unable to do this -
nevertheless, here is an attempt that seems to come close (under some metric of closeness):

For some bracket B € B;;, define o2 using the following two cases:
Case 1: 7 and j play each other in the first round under bracket B.

In this case, let i be at position k; and j be at position k; in bracket . Since B € B;;, we know that 4 and
j are in the same half of bracket B. Let B’ be the bracket that is identical to B except that j is swapped with
the team at position (k; + §) mod n, and we define 02(B) = B’. Since i and j are on opposite sides of B’,
it follows that B’ € B*

Note first that o5 is injective in this case since given any B’ in the image of o3, we can find a unique
B € Bjj such that 09(B) = B’ by swapping j with the team who plays  in the first round under B’ (Note
that, to complete the proof, the definition of o5 in the next case must not interfere with o2’s injectivity in this

6



case). Further, note that the image of B’ in this case is disjoint from the image of o - in the image of oy,
and j are never at positions exactly 5 away from each other, whereas in the image of o in this case, this is
always true.

Case 2: 7 and j do not play each other in the first round under bracket B.

In this case, we were unable to define o2 such that it was both injective and had an image that was disjoint
from the image of o3 in case 1 and the image of ;. By Lemma 7, we know that, since ¢ and j increase their
collective prize winnings in B since B € B;;, there must exist some team x such that a) one of {4, j} wins
against x and the other loses against  and b) x must play ¢ or j in bracket B (such that they can increase
their winnings by colluding so that one of them will win against x). This seems like an important fact that
could be leveraged to prove the claim, but we were unable to do so within our project timeline. It is possible
that part of the proof of Theorem 3.3 in [3] (particularly the authors’ second mapping) could be adapted to
solve this issue, but we could not figure out how to adapt that approach to the context of RCB. O

2.2.2 Empirical Evidence
Given that we could not find a sufficient proof for Theorem 12, we also endeavoured to find a counterexample
(i.e. prove that RCB is not 2—SNM-% for general prize vectors by finding a prize vector and tournament where
two teams could collude and gain more than % in expectation). We were unable to do so by finding special
cases ourselves, so we created a simulation to potentially discover a counterexample: our code can be found
at https://github.com/Ryan-S-M/COS521_FinalProject.

To attempt to discover a counter-example to Theorem 15, our simulation runs an exhaustive search over
all tournaments on all possible brackets for all pairs of teams for a given prize vector or set of prize vectors
to discover a tournament, bracket, and prize vector where two teams can collude to gain more than 1/3 in

expectation. Note that this is a computationally expensive operation: there are 2(3) possible tournaments
(because the match result between each pair can be reversed) and n! starting positions, and each must be
evaluated for (Z) pairs. Even when taking advantages of symmetries in starting positions, this means that
there are over 84 billion cases for 28 pairs of teams when n = 8 (and all this to only test 1 prize vector).
For n = 4, our simulation ran quickly enough to examine 1000 random prize vectors for every possible
tournament. We did not find a counterexample to the theorem for n = 4, though this simulation (run on the
Borda vector) was how we discovered our proof that the Borda vector is manipulable under RCB and RRB.
For n = 8, we ran our simulation on the Princeton research computing cluster for 24 hours without finding a
counterexample, though the search space was too large to complete the simulation for as many prize vectors.
Based on this empirical evidence, it seems somewhat likely that the theorem is provable, and perhaps future
work can address this.

3 Fairness

Below we show that RCB and RRB are not cover-consistent or consistent under expectation. However,
we note that they meet a basic standard for fairness in that they are both Condorcet-Consistent, meaning
whenever an undefeated team exists, they are receive the best prize. Moreover, we note that bracket-based
tournament rules are fair in that every team can play a match before anybody is required to play their next
match again, which is not the case in many other rules such as Nested Randomized King of the Hill, where
the pivot must play several teams in a row before the tournament can proceed.

Theorem 13. RCB and RRB are not cover-consistent.

Proof. Let r be either of RC'B and RRB. Consider a tournament 7™ with 4 teams (A, B, C, and D) with
the following results: D beats everyone, A beats B and C, and B beats C. Note that A covers B, because it
beats B and every team that B beats (i.e. C'). Note also that there is a 1/3 probability that the bracket pairs A
with D and B with C. In this case, B beats C and loses to D to get rank 2, whereas A loses to D and then
beats C' to get rank 3. Thus, we have it that P[o7..(A) < o/ (B)] < 2/3 < 1; that is, even though A covers
B, it is not ranked ahead of B with probability 1. Thus, r is not cover-consistent. O

Theorem 14. RCB and RRB are not consistent under expectation.


https://github.com/Ryan-S-M/COS521_FinalProject

Proof. Let r be either of RC'B and RRB. Consider a tournament 7™ with 4 teams (A, B, C, and D) with
the following results: A beats everyone except B, B loses to everyone except A, and D beats C. we have the
following possibilities, each w.p. 1/3:

» Aplays B and C plays D, which results in A getting rank 3
» Aplays C' and B plays D, which results in A getting rank 1
» Aplays D and B plays C, which results in A getting rank 1

‘We then have it that

Elop(A)] = (1/3)-1+(1/3)-14+(1/3)-3

4 Conclusions

In this paper, we extend Randomized Single Elimination Bracket to tournaments with multiple prizes,
creating two new tournament ranking rules, Randomized Complete Bracket (RCB) and Randomized Recursive
Bracket (RRB). Unlike, NRKotH, RCB and RRB force all teams to play an equal number of games (log, n), a
potentially desirable property. We show that RCB is 2—SNM—% and that RRB and RCN are both 2—SNM—% for
Binary Power-of-Two Prize Vectors. However, both RRB and RCB are manipulable under the Borda vector,
and neither is cover-consistent or consistent under expectation (intuitively implying that these rules are not
particularly “fair"). Finally, we provide a promising partial proof and empirical results towards showing
that Randomized Complete Bracket is 2—SNM—% for all prize vectors. Given the strength of our partial and
empirical results, we hope future work can show that RCB and RRB are 2—SNM—%, making it an alternative
to NRKotH with a fixed number of games for each team.
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