
Lyric-Based Playlist Generation
Creston Brooks, Henrique Schechter, Elaine Wright

TRA 301

May 10, 2021

1. Introduction

1.1 Background and Motivation

Music streaming services like Spotify, Pandora, Google Play Music, and Apple Music

offer song recommendations, and it is in their best interest to tailor these recommendations to

individual users, since accurate and personalized recommendations make users more likely to

subscribe to their services. The industry standard is to make these recommendations based on

user data rather than the songs’ content. This is most usually done through user-based

collaborative filtering: the service will recommend songs to a user that others with similar tastes

also liked [5]. This process (along with other forms of collaborative filtering) relies on large

amounts of data about user preferences to build user “taste profiles”. As such, popular songs are

advantaged in that they are well-represented in user data, since newer songs by lesser-known

artists do not have the amount of data points necessary to enter this positive feedback loop. Even

if a less popular song would be very suited to a user’s taste, it may not get recommended because

it is not favored by collaborative filtering. Moreover, this form of collaborative filtering leads to

poor recommendations for new users, as there is not enough data about their taste to determine

what users they are similar to, and thus what to recommend to them.

Collaborative filtering neglects to consider the content of songs, such as musical and

lyrical qualities, which has potential to produce more effective recommendations. Notably, while

musical features are a key part of one’s enjoyment of a song, lyrics may be just as important [4].

Moreover, because lyrical speed and stress patterns can act as proxies for some musical

elements, like rhythm and melody [4], and because text is significantly easier than audio to store,

analyze, and interpret intelligibly, an efficient text-based method of song recommendation

promises to be more feasible, yet similarly effective as an audio-based analysis.

1

1.2 Objective

We posited that lyrical analysis is a promising means of generating song

recommendations, given a number of seed songs upon which to base the recommendation. We

sought to develop a procedure that could provide a list of song recommendations, i.e. a playlist,

based on the lyrical analysis of seed songs, without considering information such as genre, artist,

year of release, or even the playlists we used to evaluate our performance. The notable exception

is the analysis of song structure, for which we used pre-existing labels of song parts, but in the

absence of such data, these parts can be estimated well, as in Fell and Sporleder (2014) [4]. In

addition, we do collect each song’s duration for the purpose of estimating its tempo, which is not

strictly a lyrical analysis, although it is closely tied to it.

2. Literature Survey

We first consulted the existing literature. In designing a lyrical analysis system, Fell and

Sporleder (2014) modeled songs as vectors of features, divided into five main categories:

vocabulary, structure, orientation toward the world, style, and semantics. There were thirteen

feature classes, including POS type-token ratios, ratios of personal pronouns, distribution of verb

tense, and presence of repetitive structures, among others. This vector representation was used

for three classification tasks: genre detection (~52% accuracy), song quality prediction

(“best”/“worst” ratings ~75% - 85% accuracy), and song publication time prediction (~47%

accuracy) [4]. Though this paper did not tackle song recommendations, the results empirically

indicated that song featurization can provide a meaningful result in the domain of lyrical

analysis. We applied the concept of song featurization as a means to represent a song in our

recommendation task.

However, we were dissatisfied with the computational efficiency of some features in Fell

and Sporleder (2014), such as rhyme detection [4]. In addition, we were motivated to seek out

other features they did not consider, so we searched for what other features have been used for

the task of song recommendation and how they were implemented. One lyrical feature widely

considered useful was sentiment. We found an efficient lexicon-based method to extract it

presented by Chen and Tang (2018) [2] (we explain our adaptation of it in Section 3.3.5 below).

Next, we had to determine how to recommend songs based on our song vectors. Many

recent papers presenting lyrical-based recommendation systems tended to use raw lyrical content

2

as input to neural networks that created song representations, which were then either used by a

later part of the neural networks to predict song similarity, or were compared using the cosine

similarity function to predict song similarity. We tried both approaches. For the neural network,

however, we changed the goal of determining whether songs are similar to the more direct goal

of determining whether they are likely to be in playlists together. We took our general

architecture from the latter half of the neural net described in Balakrishnan and Dixit (2016) [1],

who fed raw lyrics into a neural network. The ideas we take from them are explained in detail in

Section 3.4.

Finally, in order to decide how exactly to evaluate our model’s performance, we looked at

how song recommendation systems deal with the problem of taking in a set of songs (i.e., a

playlist) and recommending more songs based on those. The most common methods were

aggregation of songs using the mean and using the max. The former may involve taking the

mean of the input songs’ vectors and treating that as a single song to which the model would

compare possible songs to recommend (which involves a lot of information loss, for example a

playlist of polarly opposite and extreme songs, with respect to some feature, which would be

treated as average), or recommending the song that has the highest average similarity when

compared to the input songs. The latter involves recommending the song that is most similar to

any of the input songs. The consensus seemed to be that taking the mean of the vectors of the

seed songs and treating that as a seed song is not ideal. This makes sense, given that, for

example, this method would disregard a playlist with polarly opposite but extreme songs as one

with average songs, with respect to some feature. Indeed, Vystrčilová and Peška (2020) [11]

found that the best way to define the similarity between a prospective song to recommend and

the seed/input playlist was to define it as the largest similarity between the prospective song and

any of the playlist’s songs. As such, we scoped our project to focus on maximizing the predictive

ability between two individual songs being in a playlist together, and accordingly evaluated

recommendations based on a single seed/input song, but the usefulness of our model generalizes

to seed/input playlists by using the playlist-song similarity described by Vystrčilová and Peška

[11] and recommending the song most similar to the playlist.

3

3. Methodology

3.1 Approach

With a similar aim to Fell and Sporleder (2014), who featurized lyrics for the purpose of

content analysis [4], we determined features of interest with which to quantify and compare

songs represented as vectors. We took some features employed by Fell and Sporleder (2014) and

included new ones, with the goal of capturing a different dimension of lyrical content with each

one. Our final features can be placed broadly into the following categories: vocabulary, structure,

orientation, style, and semantics. For each feature, different types of preprocessing were

necessary. Many involved different treatment of punctuation (tokenization, deletion, or

replacement), the removal of stop words, the conversion of numerals to words (3 to three, 11 to

eleven, etc.), deletion of metadata included within the lyrics (e.g. current singer, or divisions of

song sections), and other efforts to achieve consistent measures of each song for each feature.

Several features did not lend themselves to non-English content, and thus, we implemented a

measure to filter out songs that were not detected as English with above a 99% certainty. After

the implementation of our features, we attempted to train a neural network to predict if two songs

co-occur in a playlist, and additionally, we considered the cosine similarity between the feature

vectors of songs to determine what the best playlist recommendations would be for a given seed

song (both described later in detail). We analyzed our results and compared our predictive

performance with that of random song recommendation, as well as addressed challenges and

points of interest and improvement for future research.

3.2 Dataset and Tools

The dataset which inspired us to take on this project is the Spotify Million Playlist

Dataset. It is part of the Spotify Million Playlist Dataset Challenge, which is currently in its

second iteration. The dataset contains one million playlists and over two million unique tracks by

almost 300,000 different artists. We ignored a lot of information contained in the dataset such as

playlist names and song metadata because of our project’s scope, although in practice it would be

useful information in creating a maximally effective song recommendation system. We use just a

subset of this dataset for our final evaluations and results: 141 playlists that cover 9,244

non-unique songs, of which 5,394 were unique, of which 4,994 were determined to be in

4

English. For the neural network, we used an even smaller subset: 840 unique English songs that

were a part of 13 playlists.

We used Python 3.6.9 hosted on Google Colab, and stored our data on the cloud through

Google Drive. What follows now are the different python libraries we used and what we used

them for.

Lyric collection and preprocessing

We used the Genius API connected through lyricsgenius to get the lyrics for all of the

songs we analyzed and the song part annotations (intro, chorus, etc.) (we used json to read the

data file); we used shelve to (permanently) store our data (lyrics, song feature values, trained

models, etc.) in our disk and in the cloud; we used re to edit song lyrics using regular

expressions, for instance to remove song part labels, which occur inside square brackets; we used

gensim for stopword removal; we used num2words to convert numbers in numerical form to

word form, so as to not differentiate between them; we used nltk for intelligent text tokenization.

We used langdetect to filter out non-English songs below a confidence threshold of 0.99.

This library’s implementation was non-deterministic and varied noticeably between runs, and as

a result, many non-English songs were not filtered out and affected results; however, its

performance was within our requirements and still succeeded in filtering out a large amount of

non-English songs.

Featurization

We also used gensim to create and train our Doc2Vec models, and nltk for text processing

features such as parts of speech tagging; we used sentiwordnet (within nltk) to access

SentiWordNet and get sentiments for individual words; since we found CMUdict to be too slow

as a syllable dictionary, we used syllables to get high-speed syllable estimates with good

accuracy; we used fuzzywuzzy to find similarity between two pieces of text, which we used for

title detection, repetition detection; we used pronouncing for detecting rhymes.

Recommendation and evaluation

We used pandas, sklearn, and numpy to process the data and pytorch to actually create

and train the neural network model; we used heapq (heap queues) to get n best song

recommendations for arbitrary n; we used sklearn’s TSNE methods along with pandas and

numpy to create two-dimensional representations of our song vectors, and plotly express to plot

these; we made use of random at times to evaluate a random subset of data (e.g. ~ one million

5

song pairs as opposed to ~ twelve million); we also used scipy and numpy in both testing and

visualization, to handle the song and feature data.

3.3 Song Featurization

3.3.1 Vocabulary

A natural consideration for a song’s vocabulary is its use of profanity, or more generally,

words that are considered offensive or taboo. Industry standard dictates that songs should be

marked if they are explicit, since this can be an important consideration for consumers and their

song choice. Moreover, offensive language can be significantly polarizing for playlist creation,

with many users listening to solely non-offensive songs, or on the other hand, mostly offensive

ones. The proportion of words in a song’s lyrics that are offensive is also somewhat indicative of

genre. High proportions of offensive language will be strongly correlated with rap and hip-hop,

and lower, non-zero proportions will have some correlation to pop and rock. In general, any

given genre is likely to have some consistency in its use of offensive language. Given that

consumers will often listen to songs in one or few genres, a feature that strongly correlates with

genre will be effective in song recommendation. Likewise, people will often listen to multiple

songs by the same artists, and each artist will be relatively consistent in whether they use

offensive words or not.

To determine what proportion of a song’s words are offensive, it was necessary to have

some dictionary of offensive words. We started with a list titled “Offensive/Profane Word List”

from Luis von Ahn’s research group at Carnegie Mellon. The list contains over 1300 words that

could be considered offensive and is described as “good start for anybody wanting to block

offensive or profane terms on their site” [10]. With this list as a starting point, we filtered out

words that might be considered offensive in some contexts but would not be productive to

include for our purposes (e.g. “Australian”, “yellow”, “toilet”). Several other preprocessing

measures were taken, including the addition of plural noun forms and inflected verb forms, as

well as alternate spellings. Our final list contained 1029 words that can commonly be considered

profane, offensive, or taboo, ranging in content from swear words to violence to substances to

slurs. No list can reasonably contain all offensive content nor be fully consistent with what

should or should not be considered offensive, but we found it to be notably comprehensive and

6

consistent, in practice, as most songs only draw from a very small subset of the 1029 words on

our list.

Figure 1: For example, the lyrics of “Paper Planes” by M.I.A. (left) are ~3% offensive, whereas “Hold the Line” by
Toto (right) does not contain any offensive words.

Another consideration for how a song’s vocabulary might impact song recommendation

is the lexical complexity of a song. Analyzing if lyrics contain commonly or uncommonly used

words has potential to correlate to genre. Additionally, frequencies of words will remain fairly

consistent within songs by a single artist. Artists who write about popular topics and use

common words will likely do so in many of their songs, whereas artists who write about nicher

topics and use obscure words will tend to be consistent in this behavior. Moreover, it is logical

for listeners to also have a preference in this regard, with some enjoying more complex diction

and others preferring more mainstream topics and simple word choice.

To measure lexical complexity, we scanned through every song in our database and found

the frequencies of each word across the corpus, with common stop-words being removed, as well

as any word that did not contain alphanumeric symbols. For each song, we then found the

average frequency of its words. The mean frequencies were divided by the total number of words

in the corpus of all lyrics, such that a result 0.001 would indicate that the average word in a song

comprises 1/1000th of the overall corpus of words.

One illustrative example of the results is the comparison of “Red Barchetta” by Rush,

which had an average frequency of 0.000998, and “Closer” by Ne-Yo, which had an average

frequency of 0.010397. By our metric, “Closer” uses words that are on average over ten times

more frequent than those in “Red Barchetta,” observed easily in the excerpts from each song

shown in Figure 2. Note that although stop-words were removed for calculations, they still

appear below.

7

Figure 2: Excerpts from “Red Barchetta” by Rush (right) and “Closer” by Ne-Yo (left). As one can imagine,
“Closer” uses words that are more frequent in our song corpus.

Another common measure for lexical complexity is the average number of syllables per

word in a corpus. The Flesch reading ease test is a standard metric for how difficult a text is to

read, a direct consequence of lexical complexity [6]. The test captures readability from a 5th

grade level to a complexity beyond a college graduate’s expected level using only the metrics of

words per sentence and syllables per word. Although we cannot expect lyrics to contain

structured sentences, and creating some proxy for this measure lends itself to heavy

inconsistency, we can still analyze syllables per word to get a sense of readability.

Perfect precision for this calculation requires a syllable dictionary, since syllable counts

for English words cannot be precisely known from just spelling. We attempted to use the CMU

Pronouncing Dictionary [8], however, having to search such a large dictionary for every word in

every song proved infeasible for reasonable performance. Thus, we instead made use of the

Python library syllables that estimated syllable counts quickly enough for our purposes, although

some accuracy was lost.

Other metrics that indicated lexical complexity were noun and adjective type/token

ratios. We calculated the proportion of noun tokens that were proper and common, perhaps

evidence of whether a song is about a place or person, and the proportion of adjective tokens that

were plain, comparative, and superlative, suggesting more exaggerated or emotional diction.

We also computed the part-of-speech token ratios for nouns, verbs, and adjectives to

find the proportion of all tokens that were nouns, verbs, or adjectives and learn more about the

lexical breakdown of a song as a basis for comparison.

3.3.2 Structure

We implemented two measures identified in the Fell and Sporleder (2014) paper to

featurize song structure [4]. First, we checked whether or not the song title was contained in the

lyrics. It is unusual for song lyrics to not contain the title, so we wanted to detect these unique

8

instances. Famous examples include “Bohemian Rhapsody” and “Viva la Vida”, and perhaps

songs like these without the title in the lyrics can be considered more sophisticated or intricate.

We also looked for instances of repetitive structure (Figure 3). In the Fell and

Figure 3: An example of two aligned blocks within the lyrics of a song, in this case NSYNC’s “See right through
you” [4].

Sporleder (2014) paper, the authors searched for lexically and structurally aligned blocks of text

within the lyrics [4]. A nested loop heuristic that compared each line or sliding windows of

multiple lines to each other line or window of the same length in a song took too long to run for

the purposes of our model, so we tried to simplify the approach by comparing each line against

each other line. Lines were considered lexically and structurally repetitive if they exhibited an

exact or fuzzy string match (fuzzywuzzy) that was thresholded at a token set ratio of 90 with any

other line. The feature was represented as the proportion of lines that were repetitive in a given

song text but unfortunately was still too time-intensive to be included in the model.

The Genius API breaks song lyrics down into sections called “parts”, e.g., “Intro”,

“Verse”, “Chorus”. We wanted to determine how a song’s structure deviates from the

conventional structure of the genre to which it belongs, or from the structure of another song to

provide recommendations. This feature, which we termed structure deviation, would be

quantified as an edit distance. In a simple case, an ABAB structure (“Verse”, “Chorus”, “Verse”,

“Chorus”) and an ABCB structure (“Verse 1”, “Chorus”, “Verse 2”, “Chorus”) with different

lyrics for Verses 1 and 2 would have an edit distance of 1. A dictionary was created for the types

of song parts identified by Genius, including appropriate preprocessing to make the part names

compatible, e.g., changing “Verse” to “Verse 1” if a song did not specify. We also considered

weighting certain edits over others, because certain song parts are more similar, especially

“Hook” and “Chorus.” However, we found that part names were inconsistent or even lacking for

about 20% of the songs in Genius, meaning that we could not include this feature in our model.

9

This would be a worthwhile future step, but would require preprocessing and other lexical

analysis to identify the parts of unlabeled songs.

3.3.3 Orientation

We calculated the proportion of words that are first, second, and third person

pronouns, separately, for each song. The feature captures the subjects of the song—that is,

narratively speaking, whether the character singing the song is mostly talking about themselves,

talking to someone, or talking about someone or something else. Some strong examples are

songs with very egocentric monologues, such as Kanye West’s Power (large relative frequency

of 1st-person pronouns) and songs addressed to a lover, such as Frankie Valli’s Can’t Take My

Eyes Off You (large relative frequency of 2nd-person pronouns). We considered 60 personal

pronouns, including some anachronistic, informal, and slang ones we hadn’t seen before reading

through lots of lyrics, as well as some possessive pronouns and some contractions that include

pronouns. Some interesting ones include whatcha (what are you), youse, yalls, thy, yeer, and their

variants. We use total words as a denominator, not total pronouns, so as to capture how prevalent

personal pronouns are in the text and to not determine that, for example, a song with a single

pronoun, “I”, is maximally egocentric.

Figure 4: Excerpts from “I’m Too Sexy” by Right Said Fred and “Can’t Take My Eyes Off You” by Frankie Vallie,
the first with an aptly high first person pronoun score, and the latter with aptly high first and second person pronoun
scores.

We also calculated the verb type/token ratio to find the proportion of verb tokens that

are past, present, and future. This feature indicates how the song and its narrator or subject

matter are aligned with respect to the world and its timeline. There may also be a semantic basis

for this, as it is possible that songs about the past are more wistful and longing, for example,

while songs about the future evoke eagerness and anticipation, and such songs ought to be

grouped together in our recommendations.

10

3.3.4 Style

While the content of a song’s lyrics might seem like their most important attribute, the

lyrics’ style is another dimension of lyrical analysis worth investigating. In their study of lyrical

style for the purpose of genre identification, Fell and Sporleder (2014) find the length of a song

to be a key stylistic feature [4]. Informed by this finding, we calculated the total number of

words, as well as the total number of lines in each song and recorded each as its own feature.

Moreover, since this is a purely lyrical analysis, we have no explicit indication of any

song’s tempo, a factor which heavily impacts the style of a song. However, since Genius

provides us with the duration of each song, we can use the measure of syllables per second as a

proxy for tempo. In reality, this measure is impacted not only by how fast lyrics are sung, but

also by how much of the song is instrumental (when time is passing without any lyrics).

Although distinct considerations, both of these qualities could reasonably have an impact on

music taste, and thus, syllables per second remains an enticing measure.

A final stylistic factor we considered was rhyme. Similar to the issue with syllables, it is

impossible to predict whether two English words will rhyme purely based on their spellings. This

necessitates the use of rhyme dictionaries, which proves too costly to query for each word in a

song. Thus, we checked only the final word in each line, seeing if it rhymed with the final word

in either of the two following lines. Note, too, that although near rhymes are very commonly

used by songs, we only consider perfect rhymes, as this was the available rhyme feature of the

chosen Python library. In addition to rhymes, this feature is also a strong detector of final word

repetition between lines, since any word will “rhyme” with itself.

We encountered a similar issue when trying to detect internal rhymes by converting

words to IPA and examining vowel clusters. The method proved successful; however, it was far

too slow, taking about five seconds to process each song, and thus did not remain a part of the

rhyming feature.

3.3.5 Semantics

The general idea with Doc2Vec vector representations of song lyrics was to treat a

song’s lyrics as a document or paragraph and apply the Doc2Vec, which generally applies to

documents/paragraphs, to the lyrics and obtain a numerical vector representation of each song’s

lyrics. These representations served a dual purpose in our paper: as a benchmark for how a

11

relatively naive, non-interpretable representation could do compared to our interpretable

featurization, but also as a feature itself, intended to capture word choice and word order, which

are of course features of syntax and vocabulary. In combination, they are nearly representative of

semantics, as they represent the chosen words and their contexts. For instance, Doc2Vec might

be able to capture that a song says “I don’t want you, leave me”, which is more complex than just

the words individually—a text that reads “I want you, don’t leave me” is the polar opposite in

meaning.

Generally Doc2Vec works by training the vector representation to be useful at predicting

words in a given paragraph, as explained in the official paper that presented Doc2Vec [7]. The

model that considers word order is the Distributed Memory Model of Paragraph Vectors

(PV-DM). In it, the paragraph vector is concatenated to vector representations of a series of

words and used to try to predict the next word in the paragraph. Stochastic gradient descent and

backpropagation are then used to adjust the parameters that determine the vector representation,

arriving at a final representation only after iterating many times, using different samples of text

fragments. However, we also tried the Distributed Bag of Words Model of Paragraph Vectors

(PV-DBOW), wherein word order is not considered. It utilizes the same process, but without

appending words to the paragraph vector to create the input vector: the paragraph vector is used

directly to predict words that are randomly sampled from the paragraph.

It turned out the DBOW model outperformed the DM model with our data. For instance,

the average cosine similarity between pairs of songs that did occur in playlists together using our

features (which we thus hope to be low) was ~1.02 times larger when using DM than when using

DBOW, averaged over 4,994 songs. The difference might be negligible and by chance, but a

possible explanation would be that songs have sporadic utterances and disjoint text inside them

that make it such that it is better considered a bag of words than a paragraph. For example,

“Yeah, yeah, yeah, yeah, yeah, yeah / Up in the club with my homies” is only coherent within

each line, not in combination.

Our second semantics feature, sentiment analysis, had the goal of capturing one specific

dimension of the semantics of the text: the general emotions (i.e. sentiment) that the text

expresses. We opted for using lexicon-based sentiment analysis as opposed to corpus-based

sentiment analysis—in other words, analyze individual words in a song’s lyrics as opposed to the

entire body of the lyrics. This makes our process computationally much more efficient, and does

12

not require a labeled set of songs whose emotions have already been tagged (a resource which

we do not have). This is admittedly inferior in capturing sentiment, since the context of words

affects their meaning and sentiment, but it is a very good heuristic, since the sentiment of a word

tends not to vary much within its different acceptations.

Inspired by Chen and Tang [2], who used sentiment analysis of lyrics for Chinese music

recommendation, we use term frequency–inverse document frequency (tf-idf) as a measure of

word importance in a given song’s lyrics to then get the document sentiment from these words.

We define the tf-idf of term i in song j as tfi,j * [1 + log((1 + N)/(1 + dfi))], where tfi,j is how

many times term i appears in song j, N is the number of songs in our corpus, and dfi is the

amount of documents in our corpus that term i appears in. The first add-1 ensures tfi,j is not

zeroed-out by a term with dfi = 1, and the second two prevent division by zero (for new terms not

in our original corpus); they are effectively pretending that we have one additional song where

every word in existence appears once.

While Chen and Tang [2] use a Chinese lexicon where sentiment is multi-dimensional

(arousal and valence), we opted for SentiWordNet [3] as our lexicon, which contains human

annotations of words’ “positive” and “negative” values, from 0 to 1 each. For a given word, we

determined its positive score and its negative score as the means of these scores over the word’s

different meanings. For a given song, we calculated the mean of the positive and negative scores

of the ten words with highest tf-idf scores and returned those two scores separately. Ten words

were chosen because keywords were often relatively low in the tf-idf list, beat by words that

were part of choruses or repetitive portions (e.g. “yeah”, “no”), and to ensure that enough words

were sampled, since sometimes top words were not part of the lexicon (neologisms like

“dougie”, abbreviations like “yuh” or “tryna”), in which case they were not counted in

calculating the song’s mean sentiment scores. We tried using Canada’s National Research

Council’s Emotion Lexicon [9], which also has binary dimensions “fear”, “trust”, “surprise”

“joy”, “anger”, “sadness”, “disgust”, and “anticipation”, but this representation of words seems

limited to certain words for which these adjectives qualify, and yielded representations of songs

which seemed arbitrary and which did not match our expectations for stereotypically and

strongly negative/positive songs. We also considered using the difference between positive and

negative scores as a single score, but this would not distinguish between an emotionally charged,

bipolar song and an emotionally neutral song.

13

Figure 5: Excerpts from “Woman” by Raheem DeVaughn (left), one of the data’s most strongly positive songs, and
from “Almost Lover” by A Fine Frenzy (right), one of the data’s most strongly negative songs. Note their sentiment
score correctly captures the songs’ sentiment, even though the latter uses deceivingly positive words such as
“romance” and “lover” frequently.

3.4 Neural Network

Most papers in the literature trained neural networks to detect which songs are similar,

assuming that similar songs tend to be in the same playlist. But we reasoned that playlists

represent more than just a group of similar songs—for example, as a very rudimentary case,

multiple sets of songs, each of which contain similar songs. As such, we thought we might get

better results by training the neural network to directly predict whether songs would be in a

playlist together, as opposed to whether they were similar. This also meant that instead of using

pre-existing datasets that contain a list of similar songs for each song, we had to parse through

the Spotify dataset and count co-occurrences of song pairs (i.e. what pairs of songs appeared in

the same playlist somewhere in our data). We decided to keep our output binary (songs

co-occurred in some playlist, or not) to make the song comparison a classification task with two

outputs, but it seemed promising to change the formal task the neural network is solving in order

to utilize the information of songs co-occurring multiple times.

Our neural network architecture was inspired by Balakrishnan and Dixit (2016) [1].

While they fed the raw lyrics (in the form of lists of word embeddings) into a long short-term

memory neural network to create vector representations of songs, we used the vector

representations we created by concatenating, for each song, the values of all of its features

(including Doc2Vec). What we drew from their work is that we combined song vectors by taking

their element-wise product, and that from then on we used a fully-connected neural network with

softmax at the end (to produce whatever real-valued result we got into a probability in [0, 1]). To

14

summarize, the question our neural network tried to solve was: given the element-wise product

of features of two songs, what is the probability that the two songs appear in a playlist together?

Figure 6: Pictured is the architecture we used, image adapted from Balakrishnan and Dixit (2016) [1]. Here h(1)
final

and h(2)
final are vector representations of two songs, combine uses element-wise product, FC means fully-connected,

and the output is a number in [0,1]

As for other parameters and hyperparameters we chose, we settled on the extremely

standard and well-documented ReLU activation function between each of the layers. We tried

using between one and three hidden layers, with between 25 and 100 neurons in each. We did not

think the problem was so complex as to require a high amount of hidden layers or neurons, as we

reasoned that features should almost directly indicate song similarity, which is a good proxy for

playlist co-occurrence, but upon lack of good results we decided to try different values. We tried

learning rates between 0.0001 and 0.1, varying learning rates by a multiple of 10 each time. Each

time we trained, we did so over thousands of epochs over our data, which was 64,316 examples

(80% of which was used to train the model and 20% to evaluate it), a decent portion of the

356,168 total song pairs that correspond to our 844 unique English songs. These consisted of all

the 32,158 “hits” (co-occurrences) that corresponded to our 844 unique English songs, as well as

a sample of all the “non-hits”, specifically the same amount as “hits”.

Our results were not very promising, with training and test accuracies floating around 0.5

most of the time. The best we found was a model with 0.515 accuracy on test data; however, as

with some seemingly successful models we trained, this model had a lower accuracy on training

data, significantly so, which leads us to believe the good test accuracy was due to chance

variation. We believe the lack of success may be due to a lack of data. Although we had

15

significantly more training examples than many successful neural network models we

investigated, our examples represented just over a dozen playlists. Since data preparation and

model training took very long with the amount of examples we had, though, we were unable to

re-train the model with significantly more data due to mere lack of computational power. We

reason that sampling few hits and non-hits for a few songs in each playlist, but doing so over

many playlists might yield better results, as more playlists would be better represented. However,

it also might be the case that sampling too little from each playlist would prevent the model from

understanding any single playlist’s patterns very well.

3.5 Cosine Similarity

In another metric of comparison, we looked at the cosine similarities of the feature

vectors for each song, with particular interest in if close cosine similarities could suggest that

songs were more likely to be grouped together in playlists. We first computed and stored the

feature vectors for every song in our database that were detected as English songs, amounting to

4994 unique songs across 141 playlists. We standardized for each feature (subtracting the mean

and dividing by the standard deviation). After standardization, we computed the mean cosine

similarity for every pair of songs that co-occurred in any playlist (420,914 total pairs). We then

computed the mean cosine similarity for pairs of songs randomly selected from the total number

of songs, selecting a random sample of just over one million such pairs out of a possible twelve

million. We found these numbers to be 0.06694 and 0.0003915 respectively, indicating that on

average, songs that co-occurred in playlists had cosine similarities about 171 times higher than

randomly chosen pairs of songs (which includes some pairs that did co-occur). This result

indicated that our composited features have a strong correlation to actual co-occurrence in

playlists, a promising prospect for a playlist generation method using these features.

4. Experiments and Results

Building off our promising results using cosine similarity, we implemented song

recommendation based on cosine similarity to one seed song. We then evaluated by checking if

our recommended song is in fact present in some playlist where the seed song is also present (i.e.

it co-occurs with the seed song). The precise method was as follows: we calculated the feature

vectors for every song in our database (in this round of testing, we used 4994 unique songs

16

across 141 playlists); for a given seed song, we computed the cosine similarities between that

seed song and every other song in our database; we returned the n closest similarities (and the

corresponding identities of the closest songs); we performed this process for each of the 4994

unique songs in our database and recorded how many of the n songs with the closest cosine

similarities to the current seed song actually co-occurred with it in at least one of our database’s

141 playlists; we then repeated this process and returned n random songs and computed how

many of the randomly selected songs co-occurred with the current seed song in some playlist.

This random song recommendation was used as our baseline to distinguish the success of our

song recommendation method from that of pure chance.

When recommending n = 5 songs for each of the 4994 songs in our dataset, we found

that, on average, 0.636 of the recommended songs actually co-occurred with the given seed song,

meaning that we were (0.636/5) 12.7% accurate in recommending five songs given a single

seed song. Random recommendation was only (0.1748/5) 3.5% accurate for the same task.

We repeated the same procedure for recommending n = 1 songs, i.e. finding the song with

the closest cosine similarity to each seed song and checking if the two songs co-occurred in a

playlist. On average over each of the 4994 songs, we were 14.1% accurate in this

recommendation. Random recommendation for this task was again 3.5% accurate. From these

results, we find that our method of song recommendation was 4.0 times better than random for

recommending a single song for a given seed song.

Additionally, we tested to see when recommending n = 5 songs, at least one of them

co-occurred with the seed song in some playlist. This is an important result to measure, as we

wanted to ensure that our recommendations are not just very successful for some types of playlist

and very poor for other types (as this cannot be determined from the average successful

recommendations per playlist). We found that when recommending the five songs with the

closest cosine similarities to the seed song, at least one song co-occurred with the seed 38.2% of

the time, whereas random recommendation had an accuracy of 15.0% for this task. This result

indicates that for almost 40% of seed songs (from 4994 songs across a multitude of genres and

artists), we are producing at least one successful match.

Finally, we evaluated the strength of each individual feature by performing the same

evaluation measures with each isolated value in the vector. This amounted to recommending the

n songs with values closest to the seed song for just one feature at a time. We evaluated each

17

feature using only a random subset of the total 4994 songs to achieve quicker results, since we

have many features, although reducing the amount of trials certainly reduced the accuracy of the

results. We found that song recommendation with each individual feature on its own performed

better than random recommendation and that the strongest features seemed to be the average

frequencies of words and the proportions of offensive words. Possible reasons for why these

features were strong might be the fact that both of them tend to be very consistent across works

of the same artist; it is likely that songwriters will use a similar amount of offensive words across

different songs, and likewise, they will draw from a personal lexicon of words for all songs they

write, resulting in similar average frequencies of words. Since many playlists will contain

multiple songs by the same artist, metrics that have good consistency across the same artist

should be successful. Additionally, proportions of offensive words are very indicative of genre.

Rap and hip-hop will often have high amounts of profanity, religious songs will likely have none,

and pop, rock, and country will fall somewhere in between. Average word frequencies, too, will

be prone to vary by genre, as pop songs will likely contain very frequent words, since their

content is intended to be widely relatable. Playlists are regularly composed of one or few genres,

and so, genre-differentiating will contribute heavily to playlist generation.

After evaluating our results, we used the dimension reductionality technique

“t-distributed stochastic neighbor embedding” (t-SNE) to get two-dimensional representations to

visualize clusters of playlists. To reduce clutter and best visualize whether our vector

representations capture differences between playlists, we generated a random sequence of five

playlists and visualized only those. In the image below, each dot represents a song. Songs of the

same color are in the same playlist. Note that songs from the same playlist tend to cluster, even

those with different artists and genres—the purple cluster at the bottom of Figure 7, for example,

consists of songs ranging from pop to punk rock. The presence of the outlier “Tell the World” by

Lecrae is possibly due to its extraordinary length and use of atypical words, reminding us that

users, for whatever reason, will at times add songs to a playlist they have little connection to.

18

Figure 7: Visualization of a random set of 5 playlists. Each dot is a song, and songs of the same color are on the
same playlist. Note how the songs on the same playlist tend to cluster together.

Figure 8 shows the same set of five playlists, but with an additional one (in yellow,

playlist 50). The larger yellow cluster includes “Made In America” by Toby Keith, “Farmer’s

Daughter” by Rodney Atkins, “Old Alabama” by Brad Paisley, and many songs by Corey Smith

and Luke Bryan—all country songs and artists. The yellow songs that are clustered opposite to

this main yellow cluster include songs by P!nk, Iggy Azalea, Rihanna, Ariana Grande, and

Kesha—all very stereotypical pop artists. So, while our vector representations generally

clustered playlists together notwithstanding variation in genre or artist, playlists with songs that

varied to an extreme degree in content did produce distinct clusters. Nonetheless, this is still a

successful differentiation between different types of lyrical content, in this case country and pop

genres.

19

Figure 8: Visualization of the same 5 playlists from Figure 7, plus an additional playlist in yellow. The country songs
are clustered at the bottom left, while the pop songs are clustered at the top right, showing that our model can
distinguish between genres.

5. Conclusions and Future Work

While making decisions, we encountered and thought of many alternatives to choices we

made that seemed promising and might even have reduced some issues we encountered. For

Doc2Vec, it seemed that song lyrics as the concatenation of the lyrics’ lines does not work well

as a paragraph. It is possible that intelligently punctuating between sets of lines that should be

treated separately, or otherwise treating song lines as more complex units, might yield better

results. For song structure deviation, our methods were too computationally costly to work well

with large-scale data, and so investigation into further heuristics might be fruitful. A lot of

features and methods we used were also heuristical in nature so as to be computationally viable,

such as syllable and rhyme estimation—with more computational power, more complete

analyses of these features could yield better results. Perhaps most importantly, for alternative

approaches to cosine similarity, neural networks might still be a viable choice—as described in

Section 3.4, sampling songs over more playlists rather than sampling playlists in completion

might be more successful, as would merely sampling more playlists with our same methods.

Our results warrant a few important observations. Firstly, we used heuristics and

alternative methods to extract features from song lyrics in a computationally efficient manner.

For example, we used lexicon-based sentiment analysis as opposed to corpus-based and we used

20

syllable estimation methods as opposed to querying a syllable dictionary. Second, we illustrated

with our t-SNE visualizations and cosine similarity results that the set of features we selected

yielded an effective vector representation of song lyrics (for playlist recommendation), with

songs being closer to, and generally clustering with, songs they co-occur in playlists with (as

well as songs they are lyrically similar to). We were unable to show that such a representation

could yield good recommendations through a neural network, likely due to the amount of

playlists which our data sampled (a result of our computational power). However, using a

comparatively simple recommendation system that uses cosine similarity, we showed that a

recommendation system built with these vector representations for songs is successful at

recommending songs based on an input song. In fact, beyond performing much better than

random chance, it performs well enough to be useful in practice (for example, 14% of

recommended songs given one input song are “matches”). Moreover, since we have shown that

we can effectively recommend songs with lyrical analysis alone, synthesizing our lyrical

methods with audio analysis and collaborative filtering would yield even more successful

song recommendations.

21

6. Roles and Responsibilities

Elaine: Structure parsing of songs and preprocessing to standardize names of structure parts (re);

calculating a song’s deviation from standard structure as edit distance (Levenshtein); exact and

fuzzy alignment of related lexical/lyrical structures within a song (fuzzywuzzy); proportion of

rhyming lines (pronouncing, num2words); title contained in song lyrics, exact and fuzzy

(fuzzywuzzy); proportions of types of nouns, verbs, and adjectives (nltk); proportion of noun,

verb, and adjective tokens (nltk).

Henrique: scraping lyrics from song names (lyricsgenius, json); putting all data (names, lyrics,

urls, features, etc.) into python objects and saving to disk/drive (shelve); putting together all

features (which included debugging some) and writing the song recommender (scipy, numpy);

preparing examples/data for, creating, training, and evaluating the neural net (torch, pandas,

sklearn); lyric preprocessing and tokenization for most features using regular expressions,

stopword removal, etc. (re, gensim, nltk); sentiment analysis feature using tf-idf (sentiwordnet);

training/creating doc2vec model (gensim); 1st, 2nd, 3rd person orientation feature; getting and

analyzing results and performance of model w/ and w/o doc2vec, and of different individual

features; using t-SNE to create 2-D visualizations of song vectors.

Creston: lyrical preprocessing and tokenization of features, (num2words, regular expression,

etc.) Lexical complexity feature spanning complete lexicon. Quick syllable estimator (syllables)

to compute syl/sec and syl/word without dict reference. Lexical lengths of lyrics. Adapting CMU

list of offensive words, making list of 1029 “taboo” words, implementing taboo feature.

Conversion to IPA vowels (eng_to_ipa) for near rhyme measure. Compilation of all songs that

co-occur in playlists for training and eval. Data compression of song pair uri’s for good

search/storage. Creation of dictionaries to go between compressed uri’s, lyric indices, and lyrics.

English language detection (langdetect) and threshold setting. Final song recommender, testing,

and results evaluation.

22

7. References

1. Balakrishnan, A. and Dixit, K. 2016. DeepPlaylist: Using Recurrent Neural Networks to
Predict Song Similarity.

2. Chen, X. and Tang, T.Y. 2018. Combining Content and Sentiment Analysis on Lyrics for
a Lightweight Emotion-Aware Chinese Song Recommendation System. In Proceedings
of the 2018 10th International Conference on Machine Learning and Computing (ICMLC
2018). Association for Computing Machinery, New York, NY, USA, 85–89.
DOI:https://doi.org/10.1145/3195106.3195148.

3. Esuli, A. and Sebastiani F. 2006. SENTIWORDNET: A Publicly Available Lexical
Resource for Opinion Mining. In Proceedings of the Fifth International Conference on
Language Resources and Evaluation (LREC ’06). European Language Resources
Association (ELRA), Genoa, ITA.

4. Fell M. and Sporleder C. 2014. Lyrics-based Analysis and Classification of Music. In
Proceedings of {COLING} 2014, the 25th International Conference on Computational
Linguistics: Technical Papers. Dublin City University and Association for Computational
Linguistics, Dublin, IE, 620-631.

5. Jacobson K., Murali V., Newett E., Whitman B., and Yon R. 2016. Music Personalization
at Spotify. In Proceedings of the 10th ACM Conference on Recommender Systems
(RecSys '16). Association for Computing Machinery, New York, NY, USA, 373.
DOI:https://doi.org/10.1145/2959100.2959120.

6. Kincaid J.P., Fishburne R.P. Jr, Rogers R.L., Chissom B.S. 1975. Derivation of new
readability formulas (Automated Readability Index, Fog Count and Flesch Reading Ease
Formula) for Navy enlisted personnel. Research Branch Report, Millington, TN, USA.

7. Le Q.V. and Mikolov T. 2014. Distributed Representations of Sentences and Documents.
In Proceedings of the 31st International Conference on Machine Learning. PLMR,
Beijing, CHN, 1188–1196.

8. Lenzo, K. The CMU Pronouncing Dictionary. Retrieved from
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

9. Mohammad, S.M. and Turney, P.D. 2013. Crowdsourcing a Word–Emotion Association
Lexicon. Computational Intelligence, 29: 436-465.
https://doi.org/10.1111/j.1467-8640.2012.00460.x

10. von Ahn, L. Offensive/Profane Word List. Carnegie Mellon School of Computer Science.
www.cs.cmu.edu/~biglou/resources/bad-words.txt.

11. Vystrčilová M. and Peška L. 2020. Lyrics or Audio for Music Recommendation? In
Proceedings of the 10th International Conference on Web Intelligence, Mining and
Semantics (WIMS 2020). Association for Computing Machinery, New York, NY, USA,
190–194. DOI:https://doi.org/10.1145/3405962.3405963

23

https://doi.org/10.1145/3195106.3195148
https://doi.org/10.1145/2959100.2959120
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.cs.cmu.edu/~biglou/resources/bad-words.txt
https://doi.org/10.1145/3405962.3405963

I pledge my honor that this paper represents my own work in accordance with University
regulations.

/s/ Creston Brooks
/s/ Henrique Schechter Vera
/s/ Elaine Wright

24

