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Abstract

Consider a repeated single item auction with a single buyer who has a value
for the item randomly drawn from known distribution D each round and bids
according to an online learning algorithm. “Selling to a No-Regret Buyer”
by Braverman et al. presents a strategy for the seller which, whenever the
buyer bids according to a mean-based learning algorithm, extracts revenue
that is arbitrarily close to the expected welfare. We extend these results to two
settings where the bidder does not use a simple mean-based learning algorithm.
First, we consider a bidder using a mean-based learning algorithm with recency
bias, where the results of recent rounds are weighed more strongly. We show
how much revenue the strategy yields as a function of the recency bias factor .
Next, we consider a bidder using a k-switching learning algorithm, where what
we define as a g-mean-based learning algorithm is given as options all “meta-
strategies” which switch bids at most k times. We present a new strategy
and show how much revenue it yields as a function of the g for which the
learning algorithm is g-mean-based. In both settings, we also determine which
parameter values allow the algorithm to be no-regret, and which yield revenue
that is arbitrarily close to the welfare.
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1 Introduction

Consider a bidder deciding how much to bid in an auction. For example, an ad-
vertiser must bid in an auction through Google Ads or Microsoft Advertising in
order to acquire ad spots in Google Search, Bing, Yahoo!, and DuckDuckGo
search engine results pages, as well as in the countless non-search websites,
mobile apps, and videos affiliated to these two ads platforms. If the auction
follows the format of the truthful Vickrey-Clarke-Groves auction [Vic61; Cla71;
Gro73], then the bidder should clearly bid their value. If the auction follows
the format of the Generalized First-Price (GFP) or Generalized Second-Price
(GSP) auction, as is the case in Google Ads auctions [0S22], then the optimal
decision is less clear. Bidders could attempt to compute a Bayes-Nash equi-
librium of the associated game and play accordingly, but this is unrealistic
because it is computationally expensive and requires accurate priors. More-
over, bidders might not even know the underlying mechanisms of the auction
they are participating in.

Consequently, bidders might use online learning algorithms to learn how to
bid optimally, for instance by using commercial bid optimizers. We give spe-
cial attention to bidders who no-regret learn, because bidder behavior on Mi-
crosoft Advertising is empirically consistent with no-regret learning [NST15],
where here no-regret simply means the bidder is at least as happy with his own
strategy as with any strategy which constantly bids the same amount. This
motivates the question: If a seller knows that buyers are no-regret learning
over time, how should they maximize revenue? Even in the case where there
is just a single item for sale to a single buyer, this problem is quite interesting—
and relevant, as lone bidders in sponsored search auctions are pitted against
a seller that adaptively sets reserve prices based on past bids. Braverman et
al. [Bra+17] presented a strategy with which the seller can extract (expected)
revenue arbitrarily close to the expected welfare if the buyer bids according
to any mean-based learning algorithm. A mean-based algorithm, intuitively,
is one in which the bidder chooses to bid an amount A with low probability
if there is any amount B that has historically done better than A, by some
threshold.



However, this strategy seems vulnerable. Intuitively, it works by “luring” the
bidder into submitting high bids early on by giving away the item for free, and
then charging very high prices towards the end. This works well against mean-
based algorithms, because if there are bids that have historically performed
very well, mean-based algorithms are likely to select them. However, algo-
rithms with recency bias counteract this, weighing the results of recent rounds
more strongly, and thus more quickly switching out of historically good bids
that have begun overcharging. Similarly, no-regret k-switching algorithms,
with which the buyer is at least as happy as with any strategy that switches
bids at most k£ times, also pose a problem for this strategy, since strategies
which switch bids often are able to switch out of a bid whenever it begins
overcharging. It is thus of interest to examine the performance of this strategy
in these two settings, to better understand the strength of the strategy.

In this paper, we extend the results from Braverman et al. to these two more
complicated types of learning algorithms, building off of prior work Schiffer
and Zhang [SZ19]. We first consider a bidder employing a mean-based learn-
ing algorithm with recency bias. We show how the regret of the algorithm
increases and the revenue yielded under the strategy from Braverman et al.
decreases as a function of f. We also provide a range of 5 which allows the
algorithm to remain no-regret and the strategy from Braverman et al. to yield
revenue that is arbitrarily close to the welfare. We then consider a bidder us-
ing what we call a g-mean-based learning algorithm which is given as possible
options all “meta-strategies” which switch bids at most k& times. Intuitively, a
g-mean-based algorithm is one in which the bidder chooses to bid an amount
A with probability at most g(D) if there is any amount B that has historically
done better than A by a value of D. We determine which values of k allow
the algorithm to remain no-regret, when the learning algorithm being used is
either the Multiplicative Weights Update (MWU) [AHK12] or Follow the Per-
turbed Leader (FTPL) [Han58; KV05]. We then present a new strategy similar
to the one in Braverman et al. We analyze it for general learning algorithms,
showing both the revenue it yields as a function of g and a set of g for which it
yields revenue arbitrarily close to the welfare. Finally, we show that strategy
yields revenue arbitrarily close to the welfare when the learning algorithm is
the Multiplicative Weights Update or Follow the Perturbed Leader.



2 Background

2.1 Related Work

There are several problems that are strongly related, yet different, from ours.
One of these is dynamic auctions [Pap+22; ADH16; Mir+16a; Mir+16b;
LP17]. Here, as in our setting, a single buyer repeatedly bids with a value
drawn from a known distribution over a sequence of rounds, but unlike our set-
ting, the buyer is fully strategic and reasons about how their choices might af-
fect the seller’s behavior. Another is the fishmonger problem [DPS14; Imm+-17],
where a fishmonger tries to sell an identical fresh fish every day to the same
buyer via a posted price. One key difference is that here the buyer draws a
value once and fixes it, so the seller might try to learn the buyer’s value, and
the buyer might try to hide it. Also, the literature on this problem looks at
perfect Bayesian equilibria, where again the buyer is fully strategic and rea-
sons about how their behavior will affect the seller’s.

In our model, although buyers care about the future, they don’t reason about
how their decisions might affect the seller’s decisions in the future. This is a
more fitting model for sponsored search auctions, since search engines usually
keep their proprietary algorithms for setting reserves based on past data con-
fidential, making it impossible to be fully strategic.

Another line of related work considers the Price of Anarchy of simple combi-
natorial auctions when bidders no-regret learn [Roul5; ST13; NST15; DS15].
There are three crucial differences between our setting and theirs: they study
welfare maximization while we study revenue maximization; they study com-
binatorial auctions while we study single-item auctions; and they study buyers
who no-regret learn because of the strategic behavior of other buyers, with a
publicly known auction format, while we study buyers who have to no-regret
learn even when they are the sole buyer because the auction format is hidden.

Other work has looked at learning from the point of view of the seller [CR15;
DHP15; MR15; MR16; GN16; CD17; Dud+16]. Here, buyers’ values are
drawn from an unknown distribution, and the seller attempts to learn an
approximately optimal auction with as few samples as possible. The buyer
participates in only one round. In our setting, the buyer has no information to
learn, as the buyer’s value distribution is known, and the buyer plays multiple
rounds.



Though there is clearly a vast amount of work examining repeated sales in
auctions and no-regret learning for buyers and sellers, our line of work is
unique in studying how a seller might adapt their strategy when faced with
a no-regret buyer. Note this includes not just this paper and Braverman et
al.’s “Selling to a No-Regret Buyer”, but also Zhang’s extension to multiple
bidders, “Selling to No-Regret Buyers” [Bra+17; Zha20).

Finally, it is worth mentioning that no-regret learning in online decision prob-
lems is a rich, well-studied subfield of algorithmic game theory which helps
inform our work. This is of course the case since in our setting, the buyer
is no-regret learning in face of an online decision problem. In this paper, we
focus on two popular solutions to this problem, the Multiplicative Weights Up-
date method [AHK12] and the Follow the Perturbed Leader algorithm [Han58;
KV05]. See survey [BC12] and paper [LZ07] for more details about the multi-
armed bandit problem and the contextual bandits problem, respectively, the
latter of which we base our model off of.



2.2 Model

We generally follow the model presented in [Bra+17]. We consider a setting
with 1 buyer and 1 seller. There are 7" rounds, and in each round the seller
has one item for sale. At the start of each round ¢, the buyer’s value v; (known
only to the buyer) for the item is drawn independently from some distribution
D (known to both the seller and the buyer). For simplicity, we assume D
has a finite support of size m, supported on a finite set C' = {vy, ..., v, } with
0<wv <wvy <..<uw, <1 Foreachi € [m], v; has probability ¢; of being
drawn under D. Note that since the buyer has the additional information of
their current value for the item, our setting is contextual, where at each round
t the buyer learns context v;.

The seller then presents n options for the buyer, which can be thought of
as “possible bids” (we will interchangeably refer to these as options, bids, or
arms). Each arm i is labelled with a bid value b; € [0, 1], with b; < ... < b,,.
Upon pulling arm ¢ at round ¢, the buyer receives the item with some allo-
cation probability a;;, and must pay a price p;; € [0,a;; - b;]. These values
a;+ and p;, are chosen by the seller during time ¢, but remain unknown to the
buyer until he plays an arm. Note that all of our strategies for the seller will
be non-adaptive in the sense that that a;,,p;+ are set before the first round
starts. Now, at each round ¢, the buyer learns either the values a; 4, p;; for
the arm 4 he played (in the bandits setting), or the values for all arms (in the
experts setting). All our results hold for both settings, except for those per-
taining to Multiplicative Weights Update and Follow the Perturbed Leader,
which require the experts setting.

In order for the selling strategies to represent sponsored search auctions, we
require the allocation/price rules to be monotone. That is, if ¢ > j, then for
all ¢, a;; > a;; and p;y > p;;. In other words, bidding higher should result
in a (weakly) higher probability of receiving the item and (weakly) higher ex-
pected payment. We'll also require the existence of an arm 0 with bid by = 0
and ap; = 0 for all ¢; i.e., an arm which charges nothing but does not give
the item. Playing this arm represents the choice of not participating in the
auction. Finally, we will assume our buyer is non-conservative, meaning they
are not constrained to only submit bids less than their current value for the
item. This is crucial to our strategies. We now formalize some concepts:



Definition 1 (Reward). Let r;+(v) = a;¢-v —p;s € [—1, 1] be the reward from
arm i in round t when the buyer has value v for the item. A learning algorithm
i the contextual bandits model typically takes as training input each round the
tuple (r;+(v),i,v); for ease of notation, we will assume r;4(v) contains all this
information and conveys it to learning algorithms.

Definition 2 (No-regret). An algorithm A that pulls arm I, in round t is
d-no-regret if E[Reg(A)] < §, and no-regret if § = o(T'), where Reg(A) is

defined as  maxr Y, (vt (V) — S a(v); that s, how much more
well:C—(n] o B

total reward the buyer could have attained if they had used the optimal policy
m mapping values vy € C' to arms in [m]. Note that in the recency bias setting,
IT will represent all policies that simply choose a fized arm, and in k-switching,
IT will represent all policies which switch arms at most k times.

Definition 3 (Welfare). The welfare, Val(D), is equal to E,.p[v]

Definition 4 (Mean-Based Learning Algorithm). Let o;:(v) = S\, 7i4(v).
An algorithm is y-mean-based if it is the case that whenever o;4(v) < 0j4(v) —
YT, then the probability p;+(v) that the algorithm pulls arm i on round t if
it has context v is at most v. We say an algorithm is mean-based if it is
~v-mean-based for some v = o(1)

As a final note about the model, observe that we could phrase it differently.
We frame our problem as a single buyer who repeatedly draws a value inde-
pendently from D and online learns with their value as context. However, we
could alternatively imagine a population of m different buyers who each have
a fixed value v;, and thus online learn with no context. Each round, exactly
one buyer arrives at the auction, each with probability ¢;. This is a math-
ematically equivalent model, and so all of our results hold in this model as
well.



2.3 Selling to a No-Regret Buyer

Braverman et al. [Bra+17] provided an example of a strategy for the seller
such that when the buyer bids using a mean-based learning algorithm, the seller
extracts revenue that is arbitrarily close to the expected welfare. Specifically,
they showed that in the setting we described, the following holds:

Theorem 1. If the buyer is running a mean-based algorithm, for any constant
e > 0, there exists a strategy for the seller which obtains revenue at least

(1 - )Val(D)T — o(T).

The strategy they design which extracts revenue arbitrarily close to the ex-
pected welfare is as follows:

Strategy 1. If every element in the support of D is at least 1 — €, then sell
the item at price 1 —e. Otherwise, use the following strategy:

Define p = min(vn,, 1 —£/2), and § = =2 In addition to the zero arm,

(1—111)
offer n = ll(fé’((ff 25)) possible options, each with mazimum bid value b; = 1. Di-

vide the timeline of each arm into three sessions:

1. 0 session: For the first (1 — (1 —8)"1)T rounds, the seller charges 0
and does not give the item to the buyer, i.e. (pi+,ait) = (0,0).

2. 0 session: For the next (1 —0)"1(1 — p)T rounds, the seller charges 0
and gives the item to the buyer, i.e. (pit,a;s) = (0,1).

3. 1 sesston: For the final (1 — ) 'pT rounds, the seller charges 1 and
gives the item to the buyer, i.e. (pit,a;t) = (1,1).

Note that this strategy is monotone; if © > j, then p;y > pj+ and a;; > ;.
We also get the following as a product of the proof of Theorem 1 in [Bra+17]:

Corollary 2. If the buyer is running a y-mean-based algorithm, for any con-
stant € > 0, Strategy 1 obtains revenue that is at least the “Mean-Based
Minimum Revenue”, MBMR(e,T,D) := (1 — €) Val(D)T — nyT(1 — ny +
Val(D)(1 - 5)).



3 Recency Bias

We consider a recency-biased bidding algorithm; that is, a bidding algorithm
A*, such that the action on round ¢+ 1 given past rewards of {r; s(vs)}s<¢ will
be the output of A({5°r; s(vs)}s<t), where A is another bidding algorithm and
I, is the arm A* pulls at round s.

3.1 Regret Bounds

We begin by finding a relationship between the recency bias factor 5 and the
regret of A*. We then determine a constraint on g that guarantees A* remains
no-regret if A is no-regret. Here we consider regret with respect to the optimal
arm, where II is restricted to policies that map to a single arm.

Theorem 3. If A* is an algorithm using a 6-no-regret bidding algorithm A
with recency bias factor B > 1, then A* is (§ + A)-no-regret, where A =

T_
2. (ﬂ(g_11) - T)

Proof.

E[Reg(A"({ris(vs)}sc))] = Elmaz y rig(ve) =Y rra(vn)]

T[t (vy) +22

IA
=
S
=8
WM T
!
3
’§
IIMﬂ

< E[Reg(A({5*r:4(v) ozt +2Z
< 5+225t—2T

The first line is the definition of regret. The first inequality comes from the
fact that r;4(v,) < ' — 14 Bir;(ve) for all r4(ve) € [—1,1] (see Lemma 1),
which is necessary to account for both positive and negative values of r; ;(vt).
Applying this inequality to each r;,(v;) term in the expression gives the re-
sulting inequality by linearity of expectation. =



We now prove the lemma used above:
Lemma 1. r;:(v) < ' — 14 f'r;4(v) for all riz(v) € [-1,1],8 > 1

Proof. Since 1;4(v) € [—1,1], then r;;(v) + 1 > 0. Since § > 1, then ' > 1.
Thus, we have it that

rid(v)+1 < 5t(Ti,t(U) +1)
rii(v)+1 < Bri(v)+ 8
rig(v) < B8 =14 B'ri(v)

From the theorem above, we also get the following:

Corollary 4. If A* is an algorithm using a no-regret bidding algorithm A
T

with recency bias factor f > 1 and [ satisfies (% —T) € o(T), then A*

rEMAINS no-regret

Proof. Since A is no-regret, then it is é-no-regret for some § € o(7T"). Thus,
using Theorem 3, we have it that

BlReg(A" (st b)) < 042 (0 )

= 0" €o(T)
and so A* is no-regret. m

Theorem 5. If A* is an algorithm using a no-regret bidding algorithm A with
recency bias factor > 1 and < (1 + o)YT for some o € o(1), then A*
remains no-regret.

Proof.

S h-1

IA
1 M’ﬂ
=
3
|
=

A
5 =3
n oy
S
& e

By Corollary 4, the proof is complete. m



3.2 Revenue Bounds

As before, we consider a bidding algorithm A*, such that the action on round
t+1 given past rewards of {r; s(vs) }s<; will be the output of A({5°r; s(vs) }s<t)-
Now, we additionally assume A is a y-mean-based bidding algorithm.

In this section, we provide lower bounds on the revenue the seller extracts
by using Strategy 1. First note that if every element in the support of D is at
least 1 — ¢, then Strategy 1 sells the item at price 1 — . Since D is supported
on [0, 1], this ensures a (1 — ) approximation to the welfare. The rest of the
section is dedicated to find lower bounds for the revenue of Strategy 1 when
D is not entirely supported on [1 — &, 1], and thus assumes this condition. Ob-
serve that in this setting v; < 1 — £/2, and so because we also know vy < vy,
we have it that v; < p and thus ¢ < 1.

We begin by introducing the following concept to greatly simplify notation:

Definition 5 (3-Weighed Regret Between Arms). Let oft(v) =3 B (v).
Then the (-weighed regret between arms i and j at time t is Regf:i’j(v) =

aft(v) - aﬁt(v). This is the difference in cumulative rewards over the first t

rounds, weighed by recency bias factor 3, between arm i and arm j, given value
v. For readability, let Regy; ;(v) = Reg}, ;(v) = 0i4(v) — 0j,(v)

Lemma 2. For all i,j € [n], t € [T], B > 1, we have it that Regfivj(v) >

T__
Regy;(v) — 2(26=1 — 1)

Proof.

Regl; (v) = > Bris(v) =Y Br;(v)
s=1 s=1

D ria(v) =D L) —2) (8- 1)

v

(V2
<
.
w
—~
4
S~—
|
»
[ M - |
—_
3
w
—~
4
S~—
|
[\
(7]
=@
@
|
—_
N~—

= Zrz s(v) - er,s(v) - 2(ﬁ(§ __11) - T)
BB 1)



The first inequality comes from rewriting Lemma 1 as 5°r; s(v;) > rjs(v;) —
(8% — 1) for all 7, 4(v;) € [—1,1] and applying this inequality to each term in
the summation. The second inequality comes from the fact that all the terms
in the summation are positive, so t can be increased to 7. m

Lemma 3. [f the seller uses Strategy 1, then for each j € {1,...,n—1}, j' > j,
v; € D, and T € [A}, Bj(v;)], we have it that if Regfvjvj,(vi) > Reg- ;i (vi) — a,
then aﬁT(vi) > af,ﬁ(vi) + AT, where A; == (1 — p(1 = 8T, B;(v;) =

Aj 4 mned) (1 p)(1— )T — AT — o, and a > 0 is any constant

1—vp

Proof.

Regfjjyj,(vi) > Regrjy(vi) —a

= er,s(vi) - Z?”jf,s(w) -
s=1 s=1
> Y I'+a—«o

The first line is assumed. The second line is the definition of regret between
arms. The third line uses Lemma B.2 in [Bra+17], except we add the term
—a to Bj(v;). Crucially, Lemma B.2 holds after this change because it is still
the case that B;(v;) < Aji1, since @ > 0, and so we are only making B;(v;)
smaller. m

Lemma 4. If for each v; € D, j € {1,....,n — 1}, and round T € [A;, B;(v;)],
for all j' > 7, we have it that UﬁT(vi) > af,ﬁ(vi)—l—”yT, then the expected revenue

of the seller is at least MBMR(e,T, D) — (1 — ny)na

Proof. 1t follows from the mean-based condition that for all j : A; < B;(v;), in
the interval [A;, B;j(v;)] the buyer with value v; will, with probability at least
(1 — n7y), choose an arm currently in its 1-session (i.e. an arm with label at
most j) and hence pay 1 each round. Recall the buyer has value v; for the
item with probability g;.

11



Then, the total contribution of the buyer with value v; to the expected revenue
of the seller must be at least

g Y, (1=ny)(Bi(vi) — 4))
j:Aj<Bj(Ui)

n

> g Z(l —n7y)(Bj(vi) — 4j)

= Y0 -m) G - 5T - a7 - a)

= (I =ny)gT(—ny - % # 0= pl)in:l(vi’p) Z(l — 0y

_ na (1 —p)min(vi, p)(1 — (1 —6)")

= (1 =my)aT(=ny - -+ 51— o)) )

= (L= m)qT(=ny = = + min(v, p)(1 — (1= 6)"))

= ¢Tmin(v,p)(1—(1—=06)") —¢T((1 —ny)(ny+ ?) + ny min(v;, p)(1

> T(1—¢/2)% — gT((1—ny)(ny + ?) +nymin(vi, p)(1 = (1 —6)"))
> (1-¢)guT —¢T((1—ny)(ny+ %) + nymin(v;, p)(1 — (1 —0)"))

> (1 =¢e)guiT — ¢T(ny(1 —ny + min(vi, p)(1 — (1 = 9)"))) — (1 — ny)gina

The first inequality comes from the fact that the terms where A; > B;(v;)
have a non-positive contribution to the sum. The second line is the definition
of B;(v;). The fifth line uses the definition of §. The third to last line uses
the facts that (1 — (1 —0)") = 1 —¢/2 (since n = log(e/2)/log(1 — 0)) and
min(v;, p) > (1 —e/2)v; (since if min(v;, p) # v;, then p = min(v,,1 —¢/2) >
(1 —¢/2)v;, because v; < 1 and v; < Um) Finally, the second to last line uses
the fact that (1 —¢/2)? — (1 —¢) =& >0 for all €

12
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Summing this contribution over all v; € D, we have that the expected revenue
of the seller is at least

> (1= &)gioi T — ¢;T(ny(1 = ny + min(vi, p)(1 = (1 = 6)"))) — (1 — n7)gina)

1€[m]

= (1-9)T Zqﬂ), —Tny( 1—n7)(z i) —Tny(l—(1—-¢6 Zqzmmvz,

i€[m] i€[m]
—(1- m)na(z ai)
i€[m]
> (1-9)T Z qgivi) — Tny(1 — n7>(z i) — Tny(1 —(1— Z i ;)
i€[m] i€[m]
—(1- m>na<z %)
i€[m]
= (1=¢)T(Esp[v]) = Tny(1 —ny) = Tny(1 — (1 = 6)")(Epup[v]) — (1 — ny)na
— (1—¢)Val(D)T — nyT(1 — ny + Val(D)(1 — g)) — (1 - ny)na
= MBMR(,T,D) — (1 —nvy)na
| |

Combining Lemmas 3 and 4, we have proven the following:

Theorem 6. Say A is a y-mean-based bidding algorithm. For a bidder using
any bidding algorithm A* defined as A*({r;s(vs)}s<t) = A({B°ris(vs) }s<t), if
Regy; ;(v) < Regfivj(v) +a for alli,j € [n],t € [T], and some o > 0, then
for any constant € > 0 there exists a strategy for the seller that yields expected
revenue that is at least M BM R(e,T, D) — (1 — nvy)na.

Combining this with Lemma 2, we also have the following:

Theorem 7. Say A is a v-mean-based bidding algorithm. If the bidder is using
any bidding algorithm A* defined as A*({ris(vs)}s<t) = A({B°ris(vs) }s<t),
then for any constant € > O there exists a strateqy for the seller that yields

expected revenue that is at least MBM R(e,T,D) — 2(1 — ny)n (B((ﬁ ;)1) -T).

13



Now, we know that if A is mean-based, then 7 € o(1) and, by Corollary 2,
MBMR(e,T,D) = (1 —¢)Val(D)T — o(T). We also showed in Theorem 5
that if 3 < (14 0)Y7 for some o € o(1), then (ngiz)l) —T) € o(T). Thus, we
also have the following:

Theorem 8. Say A is a mean-based bidding algorithm. If the bidder is us-
ing any bidding algorithm A* defined as A*({r;s(vs)}s<t) = A({B°ris(vs) }s<t)
such that B < (1 + )T for some o € o(1), then for any constant ¢ > 0
there exists a strategy for the seller that yields expected revenue that is at least

(1 —¢)Val(D)T — o(T).

14



4 k-Switching

We consider a bidding algorithm A* with k-switching; that is, a bidding algo-
rithm A* which takes another bidding algorithm A and as input gives it the set
of meta-arms that consists of all strategies that switch arms at most k times
over the T rounds. Though we will also provide revenue bounds for general
A, we will focus on the case where A is either the Multiplicative Weights Up-
date algorithm (MWU) or the Follow the Perturbed Leader algorithm (FTPL).
This gives us concrete algorithms to analyze, so we can show that there are
commonly used algorithms which can be no-regret under reasonable parame-
ters and which yield maximal revenue in the strategy we present in section 4.3.

We first define some common notation. Let Ml r be the set of meta-arms that
switch arms at most £ times over 7' rounds. Let [, be the arm the algorithm
A* chooses in round ¢, let M; be the arm the meta-arm M € M, r chooses at

time ¢, and let ras¢(vy) = 7ar,¢(v;) be the reward arm meta-arm M receives in
round t. We can now define A*({r; s(vs) }s<t, [m]) = A({7am,5(vs) }s<ts Mi1).

We now bound the size of the set of meta-arms, which will be useful for both
the regret and revenue bounds:

Lemma 5. The k-switching input to bidding algorithm A has M, 7| =: n®) <
(T — D) (n — 1)L arms

Proof. For each i € [0, k], we must first choose an arm out of n, then choose
an arm out of n — 1 to switch into (¢ times), and finally choose during which
rounds to execute the switches. Thus, the amount of strategies that switch
arms at most k£ times over 7' rounds is

T—1
nt®) = Znn—l ( )
k

< Y n(n—1)YT - 1)

(T _ 1)k+1(n _ 1>1€+1 _ 1
(T -Dn-1)-1
)k ( 1)k+1 _ 1
(T-1)—-7%
)

(T -1

n

< (T 1 k+1( 1)k+1
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4.1 Regret Bounds

The maximum possible number of switches is T'— 1. In the two following theo-
rems, we show that k € 0(%) will keep the k-switching algorithm no-regret,
for both Follow The Perturbed Leader and Multiplicative Weights Update.
This means we can allow close to the maximal number of switches, despite
the number of meta-arms growing exponentially with k, and still remain no-
regret. Note that in this setting we look at regret with respect to the optimal
policy that switches arms at most k times; in other words, we restrict the set

of policies II to the set of strategies which switch arms at most & times.

Theorem 9. Say A is the Multiplicative Weights Update algorithm with regret-
minimizing multiplicative update factor n. Any k-switching algorithm A* de-
fined as A*({ris(vs)}s<t, Im]) = A({rars(vs) ts<t, Myr) is no-regret if k €
o(57)

Proof. The Multiplicative Weights Update algorithm gives the following bound
for any M € My 1, where n < % is the multiplicative update factor, m;(v;) =
—r;¢(vy) is the cost of arm ¢ at round ¢, and mps(v,) = —rpre(vy) is the cost
of meta-arm M at round t:

T T T ln(n(k)
E[Z mp (o)) < Z ma(ve) + 1 Z!mM,t(vt)! + ”
t=1 t=1 t=1
T T T In(n®)
E[Z mi ()] — Z mag(v) <1 Z|mM,t(Ut)| +
t=1 t=1 t=1
T T T
In(n®)
S rane(o) — ELY rroalo)] < > fmana(on) +
t=1 t=1 t=1
T T T ln(n(k))
E[Z rae(ve) = ) rne(v)] < om ZlmM,t<Ut)| +
t=1 t=1 t=1 n
T T T ln(n(k))
E[M@ﬁﬂ? ZTM,t(Ut) - Z'f’lt,t(vt)] < UZV”M,t(Ut)\ + 7
BT =1 t=1 t=1
: - In(n(%)
E[Reg(A"({ris(vs)}s<))] < 1) _|mars(vy)] + »
t=1

Substituting the upper bound for n®) from Lemma 5 and the upper bound
Imis| = |riz] <1, we get:
(k+1)In((T"—1)(n—1))

Ui

ElReg(A™({ris(vs)bs<e))] < 0T +
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This is minimized for n = \/(kH) ln((T_l)("_l)) with value 2¢/T(k + 1) In((T — 1)(n — 1)).
This is clearly o(T') when k € o~ T )) n

Theorem 10. Say A is the Follow the Perturbed Leader algorithm with regret-
minimizing decay rate parameter \. Any k-switching algorithm A* defined as
A ({7i.5(vs) Yot [m]) = A({rar,5(vs) Ys<ts My 1) s no-regret if k € o5 {T))

Proof. The Follow the Perturbed Leader algorithm gives the following bound
for any M € M, r, where 7 is the decay rate parameter 7 of the exponential
distribution used to draw perturbances, m;; = —r;, is the cost of arm 7 at
round t, and mpy(ve) = —rar4(ve) is the cost of meta-arm M at round ¢:

E[imh,t(vt)] < (14 X) min Zthvt M [KV05]

MeMk T b\
E[tZT; mi, ¢ (ve)] — M@N%}T Zth v) < )\M@%T Z g (vr) O(ln()\n(k)))
MTQI\(/LJIZ:T Tl rara(e) = E[;T; ro(v)] < )\M@&ZT tZT; mare(vy) + w
E Mng&gT :1 rare(vg) — tzj;rft H(v)] < AM@I\%ZT Z masa(vr) O(ln()\n(k)))
E[Reg(A"({ris(vs) o)) < A min ;mMﬁt(m N O(m&n(m))
E[Reg(A"({ria(va)sxe))] < A min Yimm (0y) + C ln)fn(k)>,VT - T,

Here C' > 0 and Ty > 0 are some constants. Substituting the upper bound for
n®) from Lemma 5 and the upper bound m;; = —r;; <1, we get:

Clk+1)In((T—-1)(n
A

E[Reg( A" ({ris(vs)}oct))] < AT + ~D) vrs,

This is minimized for A = \/C(Hl)ln((g_l)(n_l)) with value 2./C(k + 1) In((T — 1)(n — 1))T.

This is clearly o(T") when k € 0(%). n
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4.2 Strategy

Here we introduce the new strategy and provide some important bounds on
its parameters:

Strategy 2. If every element in the support of D is at least 1 — ¢, then sell
the item at price 1 —e. Otherwise, use the following strategy:

Define p = maz(l1 — 5,1 — (1 —v1)(1 — (1 — £)Y¥)), and § = d=p)

(1—v1)
addition to the zero arm, offer n = max(lnla(i/s %),414: ln(i/ a)) possible options,

each with mazximum bid value b; = 1. Divide the timeline of each arm into
three sessions:

1. 0 session: For the first (1 — (1 —8)"1)T rounds, the seller charges 0
and does not give the item to the buyer, i.e. (pi+,ait) = (0,0).

2. 0 session: For the next (1 —0)"1(1 — p)T rounds, the seller charges 0
and gives the item to the buyer, i.e. (pit,a;s) = (0,1).

3. 1 sesston: For the final (1 — ) 'pT rounds, the seller charges 1 and
gives the item to the buyer, i.e. (pi1,a;iy) = (1,1).

Note that this strategy is monotone; if © > j, then p;y > pj+ and a;; > a;;.

As with Strategy 1, if every element in the support of D is at least 1 — ¢,
Strategy 2 sells the item at price 1 — ¢, ensuring a (1 — €) approximation to
the welfare (since D is supported on [0, 1]). The rest of chapter 4 is dedicated
to find lower bounds for the revenue of Strategy 2 when D is not entirely
supported on [1 —¢, 1], and thus assumes this is the case. We begin by showing
our parameter values are valid.

18



Lemma 6. For k > 0,e € (0,1), Strategy 2 has § € (0,1),p € (0,1],n > 2

Proof. We first show that ¢ € (0,1) and p € (0, 1].

Consider first the case when p = 1—¢/2. Note immediately that p € (1/2,1) C
(0,1]. Observe that since D is not entirely supported on [1 — ¢, 1], we have it
that v; < 1 —¢/2. Thus, when p =1 —¢/2, we have

6 = (1-p)/(1-uv)
= (¢/2)/(1 —v)

< 1

Moreover, since v; > 0, then in this case
o = (/2)/(1—w)

g/2
0

AR

Now, consider the case where p = 1 — (1 —v1)(1 — (1 — g/4)"/%). We know
(1—e/4)Y% € ((3/4)"* 1) and v, € [0,1], 50 p < 1—(1-1)(1—(1—g/4)"/*) =1
and p > 1—(1—-0)(1— (3/4)"/*%) = (3/4)"/% > 0. Moreover,

§ = (I—v)(1—-(1-eg/49"")/(1-w)
1—(1—¢e/4)Y*

1—(3/4)F

1

IN A

and

§ = 1—(1—¢g/4)Vk
> 11— (1)Vk
0

Thus, in all cases we have ¢ € (0,1) and p € (0, 1].

Finally, we show n > 2. We find a lower bound for n over ¢ € [0, 1], which
provides a lower bound on n over € € (0,1). We first find the minima of both
1111?1(1 4/)2) and 4k In(4/¢)/e are minimized at
e = 1, with values 2 and 4k In(4), respectively. The maximum of these two
values, which is the resulting value of n, is smallest when k = 0, with value 2.

Thus,n > 2. =

possible values of n over €. Both
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4.3 Revenue Bounds

We now show a lower bound on the revenue this strategy attains for any
k-switching algorithm, before then showing a tighter bound for MWU and
FTPL. We begin with some helpful lemmas.

Lemma 7. Under Strategy 2, (1 —6)* — (1 -0)"<1—¢/2

Proof. First consider the case where 1—(1—wv;)(1—(1—¢/4)"/%) > 1—¢/2, and
so p=mazr(l—e/2,1—(1—v)(1—(1—g/H)V*)) = 1—(1—v;)(1— (1 —e/4)/F)
and 6 = (1 —p)/(1 —v;) =1 — (1 —e/4)"/F. We have it that

B In(e/4) In(4/¢)
o= mar(E ey Ak — )
n > 4]{%
(en)/(4k) > In(4/¢)
In(e/4) > —(en)/(4k)
/4 > e @R
e/4 > (1—¢e/4)VFk
(e/HV" > (1 —e/H)!F
1— (/)" < 1—(1—g/4)V/*
1—(e/H)V" < 6
1—-6 < (g/0)Ym
(1-06)" < ¢/4
and
1—(1—g/H)V* =5
1-6 = (1—g/4)V*

(1-6)F = 1-¢/4
Thus, we have it that

1=0f=(1=0)" = (1-¢/4)—(e/9)
> 1—¢/2

Now, consider the case where 1 — (1 — v;)(1 — (1 —/4)'/*) < 1 —¢/2. In
this case, p = maz(l —&/2,1 — (1 —vy)(1 — (1 — e/4)V*)) = 1 —¢/2 and
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d=01-p)/(1—=v))=¢/(2(1 —v1)). We then have it that

In(e/4) In(4/e)

o= mar(E ey Ak — )
In(e/4)
"2 Mi—z/2)
nln(l—¢/2) < In(e/4)
(I—¢/2)" < ¢/4
1—¢/2 < (g/)m
1— (/A" < ¢/2
L= (/9" < 2/2(1 —w))
1—(e/)Y" < 6
1-6 < (g/4)Ym
(1—=0)" < /4
and
1—(1—v)1 -1 -/ < 1-¢/2
(1—v)(1 =1 —eg/HV%) > ¢/2
1—(1—e/HY > /201 —w))
1—(1—g/H* > ¢
1-6 > (1—¢g/a)\*
(1-6)F > 1—¢/4

Thus, we have it that

(1=08)=(1=0)" > (1—e/4)—(c/4)
> 1—¢/2

In both cases, we have it that (1 —§)¥ = (1—-0)">1-¢/2. =
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Lemma 8. If the seller uses Strateqy 2 (or Strategy 1), then for any j €
{1,...,n — 1}, we have it that any arm j' > j cannot begin its 0-session before
arm j begins its 1-session.

Proof. Arm j starts its 1-session at round A; := (1 — p(1 —6)"1)T. Arm
J + 1 begins its O-session at round Z;41 := (1 — (1 — §)7)T. Recall that we
defined § = (1 — p)/(1 — vy), meaning p = 1 — §(1 — vy). Since 0 < v; <
Vg < ... < Uy, < 1, we have it that p > 1 — 4. Thus, p(1 —§)7~! > (1 —§)..
Thus, (1 —p(1 =87 HT < (1 — (1 —6)))T, meaning A; < Z;;; Trivially,
Zjy1w < Zy,j" > j, since the smaller arms start their 0-session the earliest.
Thus, Aj < Zj/,j/ >7. n

We now introduce some notation. Let M (i) represent the meta-arm that solely
selects arm 4. We represent any meta-arm as M ([Sy,, Ty, t1], ..., [S¢,, Ty, tf]),
where [Sy, Ty, t] represents a switch from source arm S; to target arm T, at
time ¢, and 0 < ?; < ... <ty < T. Finally, recall that M, represents the arm
that meta-arm M chooses at round ¢.

Lemma 9. If the seller uses Strategy 2, then for each j € {k +1,...,n — 1},
J >j, v €D, and T € [Aj, Bj(v)], we have it that oy (vi) > oap 7 (v;) +D
for any D > 0, where A; := (1 —p(1 — 8 NT, Bj(v;) = A; + %ﬁi’p)(l -
p)(1 =08~ — D, and M’ is any meta-arm that chooses arm j' in round T

Proof. Consider the meta-arm M* = M([1,2, A4],[2,3, Ao, ..., [k, j, Ax]). That
is, M* is the arm that repeatedly pulls the current arm until it reaches its 1-
session and then switches to the arm with the next earliest O-session, until it
switches to arm j on its last switch.

Note first that at any round 7 > A;, this arm always has at least as much
reward as arm M (7). The arm earns more than arm j before switching to j
(by pulling arms < j, which have earlier and longer 0-sessions), and the same
as arm j after switching to j (by pulling arm j). Therefore, by Lemma B.2 in
[Bra+17], o+ - (vi) > o)+ (vi) > opmwy,-(vi) + D for k > j. Crucially, note
that Lemma B.2 holds because it does not rely on the values of p and n, which
are the only things different in Strategy 2.

Now, consider any M’ : M} < j = t > 7,Vt; that is, any meta-arm that does
not select any arms < j before 7. We will show that oy - (v;) > o - (v;) + D
for any such M’. Note that of all arms > j, j + 1 is the smallest and
thus the one with the earliest and largest 0-session. Note also that since
B; < Ajiy, arm j + 1 won't yet have entered its 1-session by 7. Thus, for
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all rounds in [0, 7], exclusively pulling arm j 4 1 is weakly better than pulling
any possible sequence of arms > j, and so oa(j41),-(vi) > onr(v;). Thus,
o (Vi) > ongrn) (Vi) + D > onp - (vi) + D.

Now, the only meta-arms left to consider are those M’ for which IM] : M| <
7,t < 7; that is, all meta-arms where there is at least one arm < j pulled before
7. By construction, the best such arms (which also pull an arm [ > j on round
7) are of the form M, = M([1,2, A1],[2,3, Aa], ..., [k, 1, Ax]),l > j. In other
words, those which do exactly as M*, repeatedly pulling the current arm until
it reaches its 1-session and then switching to the arm with the next earliest
0-session, except they switch to an arm [ > j instead of arm j on their last
switch. Until time Ay, M* and M choose the same arms and have the same
reward. By Lemma B.2, arm j will have at least D more total reward than arm
[ in round 7. Now, by Lemma 8, we have it that arms j and [ must start their
0-session after Aj. Thus, for each of these two arms, its cumulative rewards
in intervals [0, 7] and [Ag, 7] are equal. Thus, arm j will earn at least D more
reward than arm [ between A, and 7, and so M* will earn at least D more re-
ward than M| between Ay and 7. Thus, for M’ : M] < j,t < 7, we have it that
ome (Vi) > onp 7 (0)+D > opp - (v)+D. Therefore, o - (v;) > op 7 (v;)+D
for any meta-arm M’ that chooses arm [ > j in round 7. =

We now introduce the notion of a g-mean-based learning algorithm, which
generalizes the concept of a mean-based learning algorithm:

Definition 6 (g-Mean-Based Learning Algorithm). Let o;,(v) = Y2, 7i4(v).
An algorithm (for the contextual bandits problem) is g-mean-based for a func-
tion g(-) if it is the case that whenever o;+(v) < 0;:(v)—D, then the probability
that the algorithm pulls arm i on round t if it has context v is at most g(D),
for any D > 0.

Theorem 11. Say A is a g-mean-based learning algorithm. If the bidder is
using any k-switching bidding algorithm A* defined as A*({r; s(vs) }s<t, [m]) =
A({rars(vs) Ys<t, My.1), then for any constant € > 0 there exists a strategy for
the seller that yields expected revenue that is at least (1 — n®g(D)) - ((1 —
e)Val(D)T — D(n — k)), where n®™ = |M, 7| and D > 0.

Proof. Say the seller uses Strategy 2. From Theorem 11, we have it that for all
Jj:Aj < Bj(v;),j >k, in each round in the interval [A;, B;(v;)] the probability
that the buyer with value v; chooses an arm [ > j is at most g(D). Thus, by a
union bound over all meta-arms, the probability in each of these rounds that
they choose any arm > j is at most n* g(D).
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Thus, over this interval, the buyer with value v; will, with probability at least
(1—-n®g(D)), choose an arm currently in its I-session (i.e. an arm with label
at most j) and hence pay 1 each round. Recall the buyer has value v; for the
item with probability ¢;. Then, the total contribution of the buyer with value
v; to the expected revenue of the seller must be at least

g Y, (1=nWg(D)(B;(v) - 4))
jZAj<B]'('Ui),j>k

n

> g 3 (1= Wg(D)(By(w) — Ay)
= Y 0= -y~ 5y T - D)

j=k+1
= (1- n(k)g(D))qiT(—n; kD + (1- Pl)i“:l(vw p) Z (1—6)7h
o n—k . (1= pmin(o, p)((1 - 8 = (1-0)")
- (1 - n( )g(D))QZT(_ T D+ 5(1 I Ul) )
= (1= nOg(D)aT (" D+ min(ue p)(1 - 8) — (1 - 5))
> (1 n®g(D)gT(~"ZED + w1 —e/2)(1 - 9 — (1 - 6)")

> (1= n®g(D)aT(~" 22D + (1~ £/2)(1 ~ 2/2)

> (1= (D) (" D + (1 - 2)

The first inequality comes from the fact that the terms where B;(v;) < A;
have a non-positive contribution to the sum. The second line is the definition
of Bj(v;). The fourth to last line uses the definition of §. The third to last
line uses the fact that min(v;, p) > (1 — €/2)v; (since if min(v;, p) # v;, then
p=mazx(l —¢/2,1 — (1 —v)(1— (1 —-e/HV*) >1-¢/2 > (1 —¢/2)v;,
because v; < 1). The second to last line uses Lemma 7. The last line uses the
fact that (1 —¢/2)? — (1 —¢) = & >0 for all ¢.
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Summing this contribution over all v; € D, we have that the expected revenue
of the seller is at least

Y- n<’f>g<D>>qiT<—"T"“D Full-e))

i€lm]

= (1=nWgD)(1-e)T) Y gv; — (1 —n*g(D))(n— k)DT > ¢
i€[m] i€[m]

= (1 =n"g(D))(1 = &)T)Eyuplv] — (1 = n®g(D))(n — k) D(1)

= (1-n%g(D))- (1 = e)Val(D)T - D(n — k)

We now show that this bound improves for a subset of possible g.

Theorem 12. Say A is a g mean-based learning algorithm for some g(D) €
O(e=%P) for some & € w( T ) If the bidder is using any k-switching bidding
algorithm A* defined as A*({ris(vs)}s<t, [m]) = A({ras(vs) bs<t M), then
for any constant € > 0 there exists a strategy for the seller that yields expected
revenue that is at least (1 — o(1))(1 —&)Val(D)T — o(T).

Proof. We know 4B > 0, Dy > 0,£ € w(ln( ) such that g(D) < Be P VD >

Dy. We also know by Lemma 5 that n* ) < < (T —1)*Yn —1)* Let D =

(k—i—l)ln((:’;—l)(n—l)) + 1n(TT) (though we could replace \/IT(_T) with anything in

m{T)) No(T)). Then we have

lim In(n*g(D))

T—o00

< lim In((T — 1)*™(n — 1)*™1)Be™

T—o0

k+1) In((T—1)(n—1)) T
&(4 e )

— lim (k4 )T = (- 1)) — g EF DT =D =1) T

T—o00 5 " hl(T)

)+ In(B)

= Jim (k) In((T = 1)(n = 1)) = (k+ 1) (T = 1)(n — 1)) - e LBy

In(T)

=  lim —
A =S

= -

+ In(B)

—  lim n®g(D) =0

T—o00
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Thus, the quantity (1 —n®g(D)) goes to 1.

Now, notice that

In(7) In(7)

§ew(—:")

b

(k+D)In((T-D(n-1) _ o(T)
§

Moreover, it’s clear that (T 7y € o(T'), and thus D € o(T'), which clearly ensures

Bj(v;) > Aj. Comblnlng all this with Theorem 11, we get that Strategy 2
yields revenue at least

(1—n®g(D))-((1 —e)Val(D)T — D(n —k))
= (1—=0(1))(1—¢e)Val(D)T — o(T)

We now show two functions g(D) for which MWU and FTPL are g-mean-
based, and then use them to show Theorem 12 applies to MWU and FTPL.

Theorem 13. The Multiplicative Weights Update algorithm with multiplica-

tive update factor n is g-mean-based with g(D) := m

Proof. Consider two arms ¢*, 7* such that o;« ; < 0« — D for some D. We will
show that the probability that algorithm A = FTPL pulls arm ¢* on round ¢
is at most g(D) = HTID*%

The Multiplicative Weights Update algorithm chooses an arm ¢ at time ¢ pro-
portional to its weight w;,. That is, the probability that the algorithm A =

MWU selects arm i at time ¢ is PLA({r;s(vs)}s<t) =] = an” . Since the
weight at time t+41 is defined as w; 411 = w; +(1—nm; ;) = w; t(l—i—m’l t), we have
it that for any arm 4, at time ¢/, w; y = ;]1(1 +nrit). Since nry; € [—1 3 ;]

then (1 + nr;:) ~ e"™t. Thus, w;py ~ thl it = NTiG Tt = i1 In
the remainder of this proof, we will use this approximation as equality.
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Note that since r;; € [—1,1] for all 7, s, we have it that o1 < 0jxs1 —
(D —2). Thus, wj,; = €79 +-1 > M1+ D=2) " Finally, we then have:

PlA({r;s(v =il = =
Adris(s)tsc) =71 = 5=
oo W
wi*,t + wj*,t
6770'1'*,1&71
T et el
enai*,tfl
<

eI -1 4 e"](o'i*,tfl"'(D_Q))
eno'i*,tfl

eNoi* =1 4 eNoix t—1 en(D—2)
1
1 4 en(D=-2)

Theorem 14. The Follow the Perturbed Leader algorithm with perturbations
that are exponentially distributed with decay rate parameter X\ is g-mean-based

with g(D) = eﬂ(;d)

Proof. Consider two arms ¢*, j* such that o« ; < 0+, — D for some D. We will
show that the probability that algorithm A = FTPL pulls arm ¢* on round ¢

is at most g(D) = 67“2[)72)

By definition of FTPL, the output of the algorithm at time ¢ will be A({r; s(vs) }s<t) =

argmax (0;¢-1 + ¢i1), where ¢;; are i.i.d. random variables drawn from the
1€[n]

exponential distribution du(z) = Aze=**. Note that since r; , € [—1, 1] for all

i, s, we have it that 0+ ;1 < 0j+4_1 — (D — 2). Thus, we have it that:

PIA{ris(vs) }sct) = 7]

g

(O 1+ Qin g >= Oje g1+ Qe 4]
Pl — ¢jet >= 0jep1 — O 1]
Pl s — ¢pjep > D — 2]
Plgis > ¢jop + (D — 2)]

(VAN VAN VAN VAN

Where the first inequality comes from the fact that for arm * to be chosen in
round ¢, it must at least have a larger value of ;1 + ¢;; than j*.

27



Now, since ¢; ; are exponential random variables, we can compute the quantity
on the right-hand side directly:

Plpir > ¢joe+ (D —2)] = / \. e L o AM(D=2)+a) g
0
— /OO A - e—)\(D—2) . 6_2/\xdl’
0

—A\(D-2) 00
= e—_/ 2Ne My
2 0

o~ MD-2) .
- (e
e~ MD-2)

= 5 (1—e )
o~ MD-2)

2
]

We now apply Theorem 12 to the Follow the Perturbed Leader and Multi-
plicative Weights Update algorithms, and get the following:

Theorem 15. Say A is either the Follow the Perturbed Leader algorithm or
the Multiplicative Weights Update algorithm with regret-minimizing parame-
ters. If the bidder is using any k-switching bidding algorithm A* defined as
A ({ris(vs) bs<t, [m]) = A{ram.s(vs) }s<t; Mi1), then for any constant € > 0
there exists a strateqy for the seller that yields expected revenue that is at least

(1 - o0(1))(1 — £)Val(D)T — o(T).

Proof. We know from Theorems 14 and 15 that g(D) = o=y < ¢ 7%

under MWU and ¢(D) = 84(5% < e MP=2) ynder FTPL, and we know from
Theorems 9 and 10 that the regret-minimizing parameter values for these al-

gorithms are nn = \/(kﬂ)ln((?_l)(”_l)), \ = \/C(k“)l“((g_l)("_l)), both of which

In(T)
are in w(—n(T )), since im0 Y = iMoo —ln(TT) = o0o. Thus, by Theo-

rem 12, we get revenue that is at least (1—-0(1))(1 =e)Val(D)T —o(T). m
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Finally, we conclude by proving that Strategy 2 and Strategy 1 cannot yield
maximal revenue for kK > n — 1, to motivate some future work.

Theorem 16. Say the buyer is bidding according to a no-regret k-switching
algorithm with k > n — 1. Then, Strategies 1 and 2 are unable to extract
revenue that is arbitrarily close to the welfare.

Proof. By Lemma 8, we know an arm j > j’ cannot start its 0-session before
j' begins its 1-session. Thus, each arm only begins its 0-session after the arm
immediately smaller than it finishes its 1-session (and thus also its O-session).
Thus, no two arms are in their 0-session at the same time, and so to obtain
the total amount of rounds during which there is an arm in a 0-session, we
can simply sum the amount of rounds each arm is in its O-session. Formally,
the family of sets {{t € [T] : arm j is in its O-session during t} : j € [n]} is
pairwise disjoint, meaning the size of the union of all sets in the family is
simply the sum of their sizes. This means that the total amount of rounds
during which there is an arm offering the item at no cost is

Sa-a - pr = EEE0G

i=1

>
> 0
Where in the first inequality we use the fact that v; < 1 — ¢ because D is

not entirely supported on [1 — ¢, 1], and in the second we use that 6 < 1 in
Strategy 1 and in Strategy 2 (the latter of which we showed in Lemma 6).

Now, because a given arm’s 0-session consists of a continuous sequence of
rounds, and none of these sequences intersect, then a meta-arm that switches
arms n — 1 times would be able to extract utility (1—(1—0)")(1—wvy)Val(D)T
by repeatedly pulling the current arm until it reaches its 1-session and then
switching to the arm with the next earliest 0-session. This is the meta-arm
M* = M([1,2,A4],[2,3, As], ..., [n — 1,n, A,_1]). Thus, for k > n—1,3IM €
M = S e = (1= (1= 0)")(1 —v)Val(D)T. Now, let T° represent
the set of rounds for which the buyer pulls an arm in its 0-session and let T
represent the set of rounds for which the buyer pulls an arm in its 1-session.

Note TN T = ().

29



Then, the utility of the buyer is

ED> v+ Y (=1 = ED an:-v—pr

teTo teT!

= E[Z T (ve)]

= E[M@ﬁﬂ > ra(v)] — E[Reg(A* ({ri.s(vs) b))
> E[ mazx rae(ve)] — o(T)

> 1-01-=0)")(1—v)Val(D)T — o(T)
Where here we use the definitions of r;; and no-regret, and the reward of
meta-arm M* which we found above. Now we show that |T°| + |7 < (1 —
(1 —8)")(1 —v))T + o(T). We already showed above that |T°] < (1 — (1 —
§)")(1 — v1)T. For that value of |T°|, we can use the inequality above to get

E> v+ Y (-1 = (1-1-08")(1-v)Val(D)T+E[D (v, — 1)]

teTo teT! teT!
E[Z(”t - 1] > —o(T)
teT!

Since E[v; — 1] < 0, this can only hold if |T3| € o(T"). We then have it that the
value of the buyer is

EY ane-v] = E[D_ v+ vl

teTo teT!
= |T°Val(D) + |T"|Val(D)
< 1-=01=-0)")(1—v)Val(D)T + o(T)
Combining the bounds for the utility and value of the buyer, we have it that
the seller gets revenue

T T
ED) pral = BD ans-ve— (an:- v —pio)]
t=1

1

o+
I

]~

~ EJ

o

ap.t - Ut] - E[Tft,t(vt)]

-
Il

1

IN
3
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This means that over a long horizon, the seller is able to extract at most 0
revenue per round on average, which is obviously much less than extracting
revenue equal to the welfare each round. m

31



5 Conclusion

We showed that when the buyer applies recency bias to a y-mean-based no-
regret bidding algorithm A with recency bias factor 3, then the expected regret
won’t increase by more than H(3,T) := 2(% -
of the seller under Strategy 1 won’t decrease by more than (1 —ny)nH(5,T).
As a result, if we restrict 8 so that 8 < (1+¢)"7 for some o € o(1), the bidder
will remain no-regret, and Strategy 1 will be able to extract revenue that is
arbitrarily close to the welfare. This is already interesting because we found
values of 3 that are usable for the buyer (by maintaining no-regret) and some
values of 8 for which Strategy 1 yields maximal revenue, but it is particularly
exciting because the entire set of 3 values which we found to satisfy one of
these also satisfies the other. As a sidenote, we remark that 8 < 1 + Z for
some v € o(1) implies that 3 < (14 ¢)"/T for some o € o(1), and so this is an
alternative (but more restrictive) constraint on 3 that yields the same bounds.

T'). Moreover, the revenue

We also showed that k-switching algorithms using one of two common learning
algorithms, Multiplicative Weights Update and Follow the Perturbed Leader,
are able to allow k € 0( , almost the maximum value of k, and remain
no-regret. This is remark fe because this is the case despite the number of
meta-arms growing exponentially with £. We then presented Strategy 2, and
lower bounded the revenue it attains. We began with a general lower bound
of (1 —=n®g(D))((1 —&)Val(D)T — D(n — k)) when the buyer is k-switching
using any g-mean-based algorithm. We then found that Strategy 2 extracts
revenue that is arbitrarily close to the welfare when the buyer uses a g-mean-
based learning algorithm with g(D) € O(e™*P) for some £ € w(ln(T)). Next,
we provided practical relevance to that bound by showing it applies to both
Multiplicative Weights Update and Follow the Perturbed Leader. This is es-
pecially important because our bound relied on the g-mean-based property
with exponentially decreasing g(D), which is a much stronger condition than
the mean-based property. Moreover, since we had found that these two algo-
rithms specifically were able to remain no-regret for reasonably large k, then
they represent two examples of algorithms for k-switching which both allow
the buyer to remain no-regret and yield revenue that is arbitrarily close to the
welfare.
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Intuitively, Strategy 2 uses more arms than Strategy 1 (ensuring there’s sig-
nificantly more than k) and spends less time luring the bidder with 0-sessions
(and more time overcharging them). Unfortunately, it does this in part by
utilizing k in its initialization of p and n, which means the strategy requires
the seller to have some knowledge about k. More importantly, if the seller does
not have perfect information about k, they might not set n to be sufficiently
large and let £ > n — 1. As we showed in Theorem 16, in this case the seller
would not be able to attain revenue greater than o(7"), which is negligible.
Further work could search for auctions that are able to attain more revenue
when k& > n — 1, perhaps by somehow incentivizing the buyer to return to
arms they have already switched out of, so that n — 1 switches are no longer
sufficient for the buyer.
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