

Cannabis Analysis: Understanding Strain Names

Henrique Schechter Vera

COS IW 02: Natural Language Processing Professor Christiane Fellbaum

Motivation: Cannabis strain names

- Particularly bizarre. Some popular examples: "Martian Candy",
 "Grape Ape", "Obama", "Original Glue", "Strawberry Cough"
- Counterintuitive: "White Widow", "Sour Diesel"

- Intrinsically interesting
- Product naming
 - Illicit market → legal

Goal

- 1. Find patterns in the chaos
- 2. Find insights useful for creating new strain names
 - Encompassed in the above

(1) Names "overestimate [chemical/genetic] diversity

- Cannabis chemovar
 nomenclature misrepresents
 chemical and genetic diversity
- Thousands of samples drawn from 396 differently named strains cluster best into 2-3 well-defined groups

(2) THC concentration unrelated to user intoxication

- Widely thought that THC content increases intoxication, high THC considered recreational
- Recent study did not find this to be the case

Related Work: Insights

- Differences in strain names not accounted for by chemical makeup
- Differences in consumption effects not accounted for by chemical makeup
- Users still report very different consumption experiences for each strain

Related Work: Insights

- Need lens other than chemical to understand (differences in) strain properties like consumption effects, names: use linguistics
- 2. If certain strain properties are not attributable to chemical makeup, maybe they are placebo or psychologically induced by strain names

Approach

- 1. Use data from most popular cannabis website
 - Other datasets are smaller, have fewer fields
 - No analyses performed on cannabis datasets for this goal
- Apply techniques from natural language processing (NLP) and computational linguistics (CL) to preprocess or analyze the data in more meaningful way
- 3. Answer questions/hypotheses that have not yet been investigated, using strain effects, popularity, genealogy, reviews, etc.

Implementation: Scraping Data

- 1. Collect individual strain URLs
- 2. Scrape data for each strain
- 3. Handle special cases
 - a. Different page layout for some strains
 - b. Data unavailable for some strains, maintain a blacklist

Implementation: Scraping Data (Ex.)

```
'sluq':
                      'jet-fuel',
'id':
                      118799.
'aka':
                       'Jet Fuel OG, G6, Jet Fuel G6,
                       Jet Fuel Kush, G6 Kush',
'articleTotalCount': 5,
'articlesAvailable': True,
'averageRating':
                      4.523809523809524,
'award':
                       { 'blurb': None,
                       'imageUrl': None},
               [...]
'trending':
                      False,
'videoUrl':
                      None
```

Implementation: Scraping Reviews

More problematic

- Required rendering JavaScript: unable to be run in Colab
- Used pydrive and GoogleAuth to upload to cloud
 - Still in progress
 - Incompatible with Princeton account: will run out of space

What factors are correlated to ratings?

- Ran linear regression tests: strain ratings vs. (1) THC concentration,
 (2) effect scores (happy, energetic, etc.), (3) flavor scores (pungent, pine, etc.), (4) sentiment value of name
- Also regression test of sentiment of name vs. sentiment of top effect
- Variance of individual strains is too high for regression analysis
 - All negative results (not statistically significant)
 - \circ R² \approx 0.001

What effect is the most conducive to higher ratings?

- For each effect, separate strains with given top effect from all other strains. Run T-test for difference in means of ratings
- Significant but small differences. Biggest improvement: aroused, +0.1
 (p-value < 0.0002; positive!)

Do name patterns with categories influence ratings?

- Manually created list of fruit names, color names
 - Grouped shades into broad colors
- Other categories will be done programmatically using named-entity recognition (NER) models (tagging words with categories)
- Do strains with category names have greater ratings? Negative
- Do strains with (fruit/color) names have greater ratings? Negative

Do names of popular strains share common (linguistic, maybe lexical) characteristics?

- Do strains with ratings above 4.7 have different sentiment values?
 Negative
 - High threshold accounts for negatively skewed distribution
 - Sentiment computed using VADER library
- Do strains with ratings above 4.7 have different part-of-speech distributions? Negative
 - POS tagging using NLTK

Does the biological genealogy of strains account for their popularity

- Do strains which have a popular (rating > 4.7) parent have higher ratings? Positive
 - 3.60 vs. 4.15 average rating
 - P-value < 0.00007
- Intend to investigate if and how popularity dwindles as you go down the descendant line (for ex., linearly?)

Follow-up: Does 'signaling' parent's name increase popularity retention?

- See if popularity retention is attributable to names
- Do strains which share a word with their parent (e.g. "OG Kush" and "Bubba Kush") have more similar ratings to those parents? Negative
- Intend to investigate using not just exact word matches but also strong semantic similarity to parents (using word embeddings)
- Intend to test whether, for strains that have a child with a shared word and a child without one, the former children have more similar ratings

Conclusion

- Conducted extensive initial/exploratory analysis of cannabis strain names using a novel dataset and lens (computational linguistics)
- Most impactful result: genealogy has strong consequences for strain popularity
 - If not attributable to genetics/chemistry, could be name recognition: multiple tests planned
 - Could determine how cannabis producers breed in the future

Future Work

- Already mentioned extensions, revisions, and related tests
- Use amount of reviews instead of average rating as 'popularity' heuristic
 - Rating is more vulnerable to human variance, amount of reviews is more reflective of the market
- Dataset opens the floor for more research
 - Newest, largest (in strains & fields)
 - 71 fields, many with sub-fields (e.g. 'effects' and 'conditions'), plus user reviews

Acknowledgements:

Thank you for all your advice, ideas, and support:

- Christiane Fellbaum
- Jérémie Lumbroso
- Pranay Manocha, Alan Ding, and Gyoonho Kong
- And all the students in COS IW 02

And thank you Leafly.com for the scrapable data!

