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Background and Motivation

● Industry song recommendations (e.g., Spotify) based on user data 
(“collaborative filtering”), not necessarily lyrical content

● “Collaborative filtering” potentially not optimal
○ Popular songs get recommended, making them more popular
○ Less popular songs might not get recommended even if they would match a 

user’s taste very closely

● How much does lyrical content matter in effective playlist 
generation?

● Text is easier to process than audio: more efficient, less abstract



Related Work

● “Lyrics-based Analysis and Classification of Music”, Fell and 
Sporleder (2014)
○ Motivations: lyrics easier to process 

than audio data; lyrics a “proxy for 
the melodic, structural and rhythmic 
properties of the audio…melody and 
rhythm…[can] be traced in the stress 
pattern of the text; brain processes 
text and audio independently–both 
contribute to the appreciation of a 
song

○ Use: finding “best”/“worst” songs, 
genres, release dates 



Related Work
● “DeepPlaylist: Using Recurrent Neural Networks to Predict Song 

Similarity” (Balakrishnan and Dixit, 2016)
○ General NN architecture (explained later)

● “Combining Content and Sentiment Analysis on Lyrics for a 
Lightweight Emotion-Aware Chinese Song Recommendation 
System” (Chen and Tang, 2018)
○ Use tf-idf (importance of word) and lexicon-based sentiment 

analysis
● “Lyrics or Audio for Music Recommendation?” (Vystrčilová and 

Peška, 2020)  
○ Limit scope to recommend/evaluate using one “seed” song



Dataset and Tools

● Spotify Million Playlist Dataset
○ 1 mil. playlists, 2 mil. tracks
○ 300,000 artists

● Genius API / lyricsgenius
○ Song lyrics with annotations

● Featurization
○ Python, shelve, re, gensim, nltk, 

sentiwordnet, num2words, syllables 
● Neural Network

○ Pytorch, pandas, sklearn, numpy
● Evaluation

○ Scipy, numpy, random, langdetect



Approach
● Represent songs as vectors of features
● Score features, recommend songs with similar scores

○ Vocabulary
○ Structure
○ Orientation
○ Style
○ Semantics

● Song preprocessing
○ URI, dictionary 
○ Songs in English
○ Parsing, stopwords, tokenization, remove labels/punctuation (varies by feature)

● Recommendation
○ Neural network: be able to get probability songs are in a playlist together, recommend 

songs most likely to be in a playlist with all others (assume independence of songs)
○ Cosine similarity: recommend songs most similar to seed song(s): either most similar 

to mean of seed songs, or most similar to any seed song
● Challenges

○ Size of data: scalability, processing time



List of Features

Vocabulary
- Taboo, offensive tokens
- Average word frequency
- Syllables/word
- Proportion of proper or common 

nouns
- Proportion of plain, comparative, 

superlative adjectives 
- Proportion of noun, verb, adjective 

tokens

Structure
- Proportion of lines that have an 

exact/fuzzy match for structure 
alignment

- Structure of song parts
- Title contained, not contained

Orientation

- Person (1st/2nd/3rd)
- Distribution of verb tenses

Style
- Lines/song
- Words/song
- Syllables/second
- Proportion of consecutive (1 or 2 apart) 

rhyming lines 

Semantics

- Doc2vec
- Sentiment of important words



Vocabulary
● Taboo, offensive tokens (1029 total)
● Average word frequency
● Syllables/word

○ Lexical complexity correlated to 
syllables

● Noun and adjective types
○ Proportion of proper or common 

nouns
○ Proportion of plain, comparative, 

superlative adjectives 
● Token POS ratio

○ Proportion of noun, verb, and 
adjective tokens



Structure

● Title contained 
○ Unique when it is not

● Repetitive structure
○ Proportion of lines exhibiting an exact/fuzzy 

match
● Structure of parts

○ Edit distance from “standard structure”



Orientation

● Pronouns
○ e.g. “egocentric” monologue vs. flirtation with lover

■ Kanye West - Power vs. Frankie Valli - Can’t Take My Eyes Off You
○ [y’all, thy, youse, whatcha, yeerselves…] and other fun pronouns

● Verb tense
○ Proportion of verb tokens that are past, present, and future 



Style

● Lines/song
● Words/song
● Syllables/second

○ Proxy for song tempo
● Rhyming lines

○ Proportion of lines whose last word is a perfect rhyme with either of 
the following two lines’ last words

○ Attempted to compare IPA vowels of nearby words to detect 
near-rhyme, but was too slow (~5 sec per song) 



Semantics

● Doc2Vec
○ “Ignore the context words in the input, but

force the model to predict words randomly
sampled from the paragraph in the output”

○ Representation is vector that best predicts words in paragraph

● Sentiwordnet tf-idf
○ tf-idf(term i, doc j) = tfi, j * [1 + log((1 + N)/(1 + dfi))]
○ Sentiment of word: (positive, negative) averaged over meanings
○ Sum over 5 most important words to get document sentiment



Neural Network
● Given inner product of song features, what is the probability that the two 

songs appear in a playlist together?
○ ~32k/350k pairs match (844 unique songs)

● Architecture:
○ Inner product of songs
○ Fully-connected
○ ReLU activation
○ Sigmoid output
○ Hyperparameters: layers,

hidden neurons, learning rate, epochs
● Insufficient data?

○ Only over a dozen playlists’ worth
○ ~0.515 accuracy on test data



Cosine Similarity

● Computed mean similarity
for all pairs songs that co-occur in playlist (~4%, n = ~32,000)

● Computed mean similarity for all pairs of songs (~0.01%, n = 
~350,000)
○ Songs that co-occur in playlist have significantly higher cos. 

similarity
● For playlist generation given a seed song, compute 

similarities of seed to every other song, return n highest 
similarities



Evaluation

● Iterating over all songs in our database as seeds, we 
generated playlist of varying lengths (n = 1, 5, 10…) and 
achieved a success rate of ~24%, meaning that 24% of songs 
we generated for a seed song actually co-occurred with that 
seed song in some playlist.

● Randomly generated playlists of varying lengths achieved a 
success rate of ~9.5%



Evaluation Breakdown

● With further testing, we find 
that playlist generation is still 
~23% successful even without 
doc2vec

● Performing playlist generation 
while isolating each feature, we 
also estimate which features are 
most important

1. Syl / sec, syl / word
2. Total lines / words
3. Sentiment analysis
4. Overall POS proportions
5. Pronoun proportions

Best Features



Conclusion and Future Work

● With current database, playlist generation success vs. random chance: 
24% vs. 10%

● For more conclusive evaluations of individual features and more 
testing, expanded database is necessary
○ Process is streamlined but will require several hours of processing

● More data will also better illuminate individual feature performance, 
allowing us to optimize components and focus on best-performing 
features

● Lots of other seemingly promising features were too computationally 
costly, some in the paper

● Eventual synthesis with audio-based analysis for maximum success



Questions?

       🎵



Roles and Responsibilities

Elaine: Structure parsing of songs and preprocessing to standardize 
names of structure parts (re); calculating a song’s deviation from 
standard structure as edit distance (Levenshtein); exact and fuzzy 
alignment of related lexical/lyrical structures within a song 
(fuzzywuzzy); proportion of rhyming lines (pronouncing, num2words); 
title contained in song lyrics, exact and fuzzy (fuzzywuzzy); 
proportions of types of nouns, verbs, and adjectives (nltk); proportion 
of noun, verb, and adjective tokens (nltk)



Roles and Responsibilities

Henrique: scraping lyrics from song names (lyricsgenius, json); 
putting all data (names, lyrics, urls, features, etc.) into python objects 
and saving to disk/drive (shelve); putting together all features and 
writing the song recommender (scipy, numpy); preparing 
examples/data for, creating, training, and evaluating the neural net 
(torch, pandas, sklearn); lyric preprocessing and tokenization for most 
features using regular expressions, stopword removal, etc. (re, 
gensim, nltk); sentiment analysis feature using tf-idf (sentiwordnet); 
training/creating doc2vec model (gensim);  1st, 2nd, 3rd person 
orientation feature; getting and analyzing results and performance of 
model w/ and w/o doc2vec, and of different individual features



Roles and Responsibilities
Creston: lyrical pre-processing and tokenization across features, 
(num2words, regular expression, etc.) Lexical complexity feature 
spanning complete lexicon. Quick syllable estimator (syllables) to 
compute syl/sec and syl/word without dict reference. Lexical lengths of 
lyrics. Adapting and augmenting CMU list of offensive words, resulting 
in list of 1029 “taboo” words, implementing taboo feature. Conversion 
to IPA vowels (eng_to_ipa) for near rhyme measure. Compilation of all 
songs that co-occur in playlists for training and eval. Data compression 
of song pair uri’s for achievable search/storage. Creation of dictionaries 
to go between compressed uri’s, lyric indices, and lyrics. English 
language detection (langdetect) and threshold setting. Final song 
recommender, testing, and results evaluation.


