
Lyric-based Playlist
Generation
💿

Creston Brooks, Henrique Schechter Vera, Elaine Wright

May 7, 2021

Background and Motivation

● Industry song recommendations (e.g., Spotify) based on user data
(“collaborative filtering”), not necessarily lyrical content

● “Collaborative filtering” potentially not optimal
○ Popular songs get recommended, making them more popular
○ Less popular songs might not get recommended even if they would match a

user’s taste very closely

● How much does lyrical content matter in effective playlist
generation?

● Text is easier to process than audio: more efficient, less abstract

Related Work

● “Lyrics-based Analysis and Classification of Music”, Fell and
Sporleder (2014)
○ Motivations: lyrics easier to process

than audio data; lyrics a “proxy for
the melodic, structural and rhythmic
properties of the audio…melody and
rhythm…[can] be traced in the stress
pattern of the text; brain processes
text and audio independently–both
contribute to the appreciation of a
song

○ Use: finding “best”/“worst” songs,
genres, release dates

Related Work
● “DeepPlaylist: Using Recurrent Neural Networks to Predict Song

Similarity” (Balakrishnan and Dixit, 2016)
○ General NN architecture (explained later)

● “Combining Content and Sentiment Analysis on Lyrics for a
Lightweight Emotion-Aware Chinese Song Recommendation
System” (Chen and Tang, 2018)
○ Use tf-idf (importance of word) and lexicon-based sentiment

analysis
● “Lyrics or Audio for Music Recommendation?” (Vystrčilová and

Peška, 2020)
○ Limit scope to recommend/evaluate using one “seed” song

Dataset and Tools

● Spotify Million Playlist Dataset
○ 1 mil. playlists, 2 mil. tracks
○ 300,000 artists

● Genius API / lyricsgenius
○ Song lyrics with annotations

● Featurization
○ Python, shelve, re, gensim, nltk,

sentiwordnet, num2words, syllables
● Neural Network

○ Pytorch, pandas, sklearn, numpy
● Evaluation

○ Scipy, numpy, random, langdetect

Approach
● Represent songs as vectors of features
● Score features, recommend songs with similar scores

○ Vocabulary
○ Structure
○ Orientation
○ Style
○ Semantics

● Song preprocessing
○ URI, dictionary
○ Songs in English
○ Parsing, stopwords, tokenization, remove labels/punctuation (varies by feature)

● Recommendation
○ Neural network: be able to get probability songs are in a playlist together, recommend

songs most likely to be in a playlist with all others (assume independence of songs)
○ Cosine similarity: recommend songs most similar to seed song(s): either most similar

to mean of seed songs, or most similar to any seed song
● Challenges

○ Size of data: scalability, processing time

List of Features

Vocabulary
- Taboo, offensive tokens
- Average word frequency
- Syllables/word
- Proportion of proper or common

nouns
- Proportion of plain, comparative,

superlative adjectives
- Proportion of noun, verb, adjective

tokens

Structure
- Proportion of lines that have an

exact/fuzzy match for structure
alignment

- Structure of song parts
- Title contained, not contained

Orientation

- Person (1st/2nd/3rd)
- Distribution of verb tenses

Style
- Lines/song
- Words/song
- Syllables/second
- Proportion of consecutive (1 or 2 apart)

rhyming lines

Semantics

- Doc2vec
- Sentiment of important words

Vocabulary
● Taboo, offensive tokens (1029 total)
● Average word frequency
● Syllables/word

○ Lexical complexity correlated to
syllables

● Noun and adjective types
○ Proportion of proper or common

nouns
○ Proportion of plain, comparative,

superlative adjectives
● Token POS ratio

○ Proportion of noun, verb, and
adjective tokens

Structure

● Title contained
○ Unique when it is not

● Repetitive structure
○ Proportion of lines exhibiting an exact/fuzzy

match
● Structure of parts

○ Edit distance from “standard structure”

Orientation

● Pronouns
○ e.g. “egocentric” monologue vs. flirtation with lover

■ Kanye West - Power vs. Frankie Valli - Can’t Take My Eyes Off You
○ [y’all, thy, youse, whatcha, yeerselves…] and other fun pronouns

● Verb tense
○ Proportion of verb tokens that are past, present, and future

Style

● Lines/song
● Words/song
● Syllables/second

○ Proxy for song tempo
● Rhyming lines

○ Proportion of lines whose last word is a perfect rhyme with either of
the following two lines’ last words

○ Attempted to compare IPA vowels of nearby words to detect
near-rhyme, but was too slow (~5 sec per song)

Semantics

● Doc2Vec
○ “Ignore the context words in the input, but

force the model to predict words randomly
sampled from the paragraph in the output”

○ Representation is vector that best predicts words in paragraph

● Sentiwordnet tf-idf
○ tf-idf(term i, doc j) = tfi, j * [1 + log((1 + N)/(1 + dfi))]
○ Sentiment of word: (positive, negative) averaged over meanings
○ Sum over 5 most important words to get document sentiment

Neural Network
● Given inner product of song features, what is the probability that the two

songs appear in a playlist together?
○ ~32k/350k pairs match (844 unique songs)

● Architecture:
○ Inner product of songs
○ Fully-connected
○ ReLU activation
○ Sigmoid output
○ Hyperparameters: layers,

hidden neurons, learning rate, epochs
● Insufficient data?

○ Only over a dozen playlists’ worth
○ ~0.515 accuracy on test data

Cosine Similarity

● Computed mean similarity
for all pairs songs that co-occur in playlist (~4%, n = ~32,000)

● Computed mean similarity for all pairs of songs (~0.01%, n =
~350,000)
○ Songs that co-occur in playlist have significantly higher cos.

similarity
● For playlist generation given a seed song, compute

similarities of seed to every other song, return n highest
similarities

Evaluation

● Iterating over all songs in our database as seeds, we
generated playlist of varying lengths (n = 1, 5, 10…) and
achieved a success rate of ~24%, meaning that 24% of songs
we generated for a seed song actually co-occurred with that
seed song in some playlist.

● Randomly generated playlists of varying lengths achieved a
success rate of ~9.5%

Evaluation Breakdown

● With further testing, we find
that playlist generation is still
~23% successful even without
doc2vec

● Performing playlist generation
while isolating each feature, we
also estimate which features are
most important

1. Syl / sec, syl / word
2. Total lines / words
3. Sentiment analysis
4. Overall POS proportions
5. Pronoun proportions

Best Features

Conclusion and Future Work

● With current database, playlist generation success vs. random chance:
24% vs. 10%

● For more conclusive evaluations of individual features and more
testing, expanded database is necessary
○ Process is streamlined but will require several hours of processing

● More data will also better illuminate individual feature performance,
allowing us to optimize components and focus on best-performing
features

● Lots of other seemingly promising features were too computationally
costly, some in the paper

● Eventual synthesis with audio-based analysis for maximum success

Questions?

 🎵

Roles and Responsibilities

Elaine: Structure parsing of songs and preprocessing to standardize
names of structure parts (re); calculating a song’s deviation from
standard structure as edit distance (Levenshtein); exact and fuzzy
alignment of related lexical/lyrical structures within a song
(fuzzywuzzy); proportion of rhyming lines (pronouncing, num2words);
title contained in song lyrics, exact and fuzzy (fuzzywuzzy);
proportions of types of nouns, verbs, and adjectives (nltk); proportion
of noun, verb, and adjective tokens (nltk)

Roles and Responsibilities

Henrique: scraping lyrics from song names (lyricsgenius, json);
putting all data (names, lyrics, urls, features, etc.) into python objects
and saving to disk/drive (shelve); putting together all features and
writing the song recommender (scipy, numpy); preparing
examples/data for, creating, training, and evaluating the neural net
(torch, pandas, sklearn); lyric preprocessing and tokenization for most
features using regular expressions, stopword removal, etc. (re,
gensim, nltk); sentiment analysis feature using tf-idf (sentiwordnet);
training/creating doc2vec model (gensim); 1st, 2nd, 3rd person
orientation feature; getting and analyzing results and performance of
model w/ and w/o doc2vec, and of different individual features

Roles and Responsibilities
Creston: lyrical pre-processing and tokenization across features,
(num2words, regular expression, etc.) Lexical complexity feature
spanning complete lexicon. Quick syllable estimator (syllables) to
compute syl/sec and syl/word without dict reference. Lexical lengths of
lyrics. Adapting and augmenting CMU list of offensive words, resulting
in list of 1029 “taboo” words, implementing taboo feature. Conversion
to IPA vowels (eng_to_ipa) for near rhyme measure. Compilation of all
songs that co-occur in playlists for training and eval. Data compression
of song pair uri’s for achievable search/storage. Creation of dictionaries
to go between compressed uri’s, lyric indices, and lyrics. English
language detection (langdetect) and threshold setting. Final song
recommender, testing, and results evaluation.

